Microfluidic Assembly Synthesis of Magnetic TiO2@SiO2 Hybrid Photonic Crystal Microspheres for Photocatalytic Degradation of Deoxynivalenol

Author(s):  
Qianjin Li ◽  
Yang Deng ◽  
Shijie Dai ◽  
Yuxiang Wu ◽  
Wei Li ◽  
...  
RSC Advances ◽  
2013 ◽  
Vol 3 (38) ◽  
pp. 17021 ◽  
Author(s):  
Sugang Meng ◽  
Danzhen Li ◽  
Peng Wang ◽  
Xiuzhen Zheng ◽  
Jinxiu Wang ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 93
Author(s):  
Kenichi Maeno ◽  
Bhargav R. Patel ◽  
Tatsuro Endo ◽  
Kagan Kerman

Congo Red (CR) and Amido Black 10B (AB-10B) are anionic diazo dyes, which are metabolized to produce a bioaccumulative and persistent carcinogen, benzidine. In this regard, an angle sensitive sensor composed of photonic crystal supported photocatalyst was fabricated for the simultaneous detection and photocatalytic degradation of diazo dyes from aqueous solutions. Reflectance spectroscopy was used in the detection of CR and AB-10B, which was based on the emergence of the incident angle dependent reflection peaks from the TiO2 coated two-dimensional photonic crystal (2D-PhC) surfaces and their subsequent quenching due to the presence of dye molecules whose absorbance peak intensity overlapped the reflection peak intensity of TiO2 at the respective angle. Interestingly, ultraviolet (UV) mediated photocatalytic degradation of CR and AB-10B was achieved using the same TiO2 coated 2D-PhC surfaces. 2D-PhC underneath the TiO2 layer was able to confine and localize the light on the TiO2 coated 2D-PhC surface, which enhanced the light absorption by dye molecules on the TiO2 surface and the photocatalytic efficiency in the degradation of CR and AB-10B. Finally, this proof-of-concept study demonstrated the fabrication of copolymer film based photonic crystal supported photocatalytic device, which can be used for developing miniaturized sensors competent in on-field detection and degradation of pollutants.


2018 ◽  
Vol 1 (1) ◽  
pp. 2-19
Author(s):  
Mahmood Sh. Majeed ◽  
Raid W. Daoud

A new method proposed in this paper to compute the fitness in Genetic Algorithms (GAs). In this new method the number of regions, which assigned for the population, divides the time. The fitness computation here differ from the previous methods, by compute it for each portion of the population as first pass, then the second pass begin to compute the fitness for population that lye in the portion which have bigger fitness value. The crossover and mutation and other GAs operator will do its work only for biggest fitness portion of the population. In this method, we can get a suitable and accurate group of proper solution for indexed profile of the photonic crystal fiber (PCF).


2018 ◽  
Vol 8 (3) ◽  
pp. 172-188
Author(s):  
M. Abdulmahdi ◽  
S. Sarsooh ◽  
M. Oleiwi
Keyword(s):  

2018 ◽  
Vol 18 (3) ◽  
pp. 81-91 ◽  
Author(s):  
C. Lalhriatpuia

Nanopillars-TiO2 thin films was obtained on a borosilicate glass substrate with (S1) and without (S2) polyethylene glycol as template. The photocatalytic behaviour of S1 and S2 thin films was assessed inthe degradation of methylene blue (MB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the SEM, XRD, FTIR and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data confirmed that the TiO2 particles are in its anatase mineral phase. The SEM and AFM images indicated the catalyst is composed with nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of MB was well studied at wide range of physico-chemical parameters. The effect of solution pH (pH 4.0 to 10.0) and MB initial concentration (1.0 to 10.0 mg/L) was extensively studied and the effect of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of MB was demonstrated. The maximum percent removal of MB was observed at pH 8.0 beyond which it started decreasing and a low initial concentration of the pollutant highly favoured the photocatalytic degradation using thin films and the presence of several interfering ions diminished the photocatalytic activity of thin films to some extent. The overall photocatalytic activity was in the order: S2 > S1 > UV. The photocatalytic degradation of MB was followed the pseudo-first-order rate kinetics. The mineralization of MB was studied with total organic carbon measurement using the TOC (total organic carbon) analysis.


2014 ◽  
Vol 1 ◽  
pp. 356-359
Author(s):  
Yoshinori Tanaka ◽  
Takashi Asano ◽  
Susumu Noda

Sign in / Sign up

Export Citation Format

Share Document