bet specific surface area
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 39)

H-INDEX

12
(FIVE YEARS 4)

Inorganics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 88
Author(s):  
Younes Hanifehpour ◽  
Mehdi Abdolmaleki ◽  
Sang Woo Joo

Eu-doped Y2O3 coated diatomite nanostructures with variable Eu3+ contents were synthesized by a facile hydrothermal technique. The products were characterized by means of energy dispersive X-ray photoelectron spectroscopy (EDX), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Brunauer–Emmett–Teller (BET), UV-vis diffuse reflectance spectroscopy, and photoluminescence spectroscopy techniques. As claimed by PXRD, the particles were crystallized excellently and attributed to the cubic phase of Y2O3. The influence of substitution of Eu3+ ions into Y2O3 lattice caused a redshift in the absorbance and a decrease in the bandgap of as-prepared coated compounds. The pore volume and BET specific surface area of Eu-doped Y2O3-coated diatomite is greater than uncoated biosilica. The sonophotocata-lytic activities of as-synthesized specimens were evaluated for the degradation of Reactive Blue 19. The effect of various specifications such as ultrasonic power, catalyst amount, and primary dye concentration was explored.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojun Dai ◽  
Yan Cheng ◽  
Meng Si ◽  
Qiang Wei ◽  
Luyuan Zhao ◽  
...  

SAPO-11 molecular sieves were modified with different Ni contents by the in situ modification method. The Ni-modified SAPO-11 molecular sieves were used as the supports to prepare the corresponding NiW-supported catalysts for the hydroisomerization of n-hexadecane. The Ni-modified SAPO-11 and the corresponding NiW-supported catalysts were characterized by X-ray diffraction, scanning electron microscopy, N2 adsorption–desorption, NH3-temperature-programmed desorption, pyridine adsorbed infrared, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The results showed that Ni in situ modification preserved the crystal structure of SAPO-11; increased the BET specific surface area, mesopore volume, and medium and strong Brønsted acid amount of SAPO-11; and increased the stacking number of the active phase of the catalysts. 3Ni-SAPO-11 possessed the largest BET specific surface area, mesopore volume, and medium and strong Brønsted acid amount. NiW/3Ni-SAPO-11 possessed the highest dispersion of the active phase and the highest sulfidation degree of the active metals. The results of the hydroisomerization of n-hexadecane showed that Ni in situ modification improved the catalytic activity and selectivity of the catalysts for the hydroisomerization of n-hexadecane to varying degrees. Especially, NiW/3Ni-SAPO-11 had the highest catalytic activity and isomer selectivity, and the maximum yield of isomeric hexadecane could reach 71.18%.


2021 ◽  
Author(s):  
Li-Feng Cai ◽  
Jie-Min Zhan ◽  
Jie Liang ◽  
Lei Yang ◽  
Jie Yin

Abstract Novel hierarchical porous carbon materials (HPCs) were fabricated via a reactive template-induced in situ hypercrosslinking procedure. The effects of carbonization conditions on the microstructure and morphology of HPC were investigated, and the adsorption of methylene blue (MB) on HPC was explored. The as-prepared HPC has a hierarchical micro-, meso- and macropore structure, which results from the overlap of hollow nanospheres possessing microporous shells and macroporous cavities. The carbonization temperature, carbonization time and carbonization heating rate played important roles in tailoring the nanostructures of HPC. The BET specific surface area and micropore specific surface area can reach 2388 m2·g−1 and 1892 m2·g−1, respectively. Benefitting from the well-developed pore structure, the MB removal efficiency can reach 99% under optimized conditions. The adsorption kinetics and thermodynamics can be well described by a pseudo-second-order model and Langmuir model, respectively. Furthermore, such adsorption is characterized by a spontaneous endothermic process.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1168
Author(s):  
Sung-Jei Hong ◽  
Hyuk-Jun Mun ◽  
Byeong-Jun Kim ◽  
Young-Sung Kim

In this study, ultrafine nickel oxide nanoparticles (NiO NPs) were well synthesized using a simple wet chemical method under low temperature, 300 °C. An Ni(OH)2 precursor was well precipitated by dropping NH4OH into an Ni(Ac)2 solution. TG-DTA showed that the weight of the precipitate decreases until 300 °C; therefore, the precursor was heat-treated at 300 °C. X-ray diffraction (XRD) patterns indicated that hexagonal-structured NiO NPs with (200) preferred orientation was synthesized. In addition, BET specific surface area (SSA) and HRTEM analyses revealed that spherical NiO NPs were formed with SSA and particle size of 60.14 m2/g and ca. 5–15 nm by using the low temperature method. FT-IR spectra of the NiO NPs showed only a sharp vibrating absorption peak at around 550 cm−1 owing to the Ni-O bond. Additionally, in UV-vis absorption spectra, the wavelength for absorption edge and energy band gap of the ultrafine NiO NPs was 290 nm and 3.44 eV.


Author(s):  
P. Toumsri ◽  
W. Auppahad ◽  
S. Saknaphawuth ◽  
B. Pongtawornsakun ◽  
S. Kaowphong ◽  
...  

Furfural is a valuable dehydration product of xylose. It has a broad spectrum of industrial applications. Various catalysts containing SO 3 H have been reported for the conversion of xylose into furfural. Nevertheless, the multi-step preparation is tedious, and the catalysts are usually fine powders that are difficult to separate from the suspension. Novel magnetic mesoporous carbonaceous materials (Fe/MC) were successfully prepared via facile self-assembly in a single step. A facile subsequent hydrothermal sulfonation of Fe/MC with concentrated H 2 SO 4 at 180°C gave mesoporous carbon bearing SO 3 H groups (SO 3 H@Fe/MC) without loss of the magnetic properties. Various techniques were employed to characterize the SO 3 H@Fe/MC as a candidate catalyst. It showed strong magnetism due to its Fe particles and possessed a 243 m 2  g −1 BET-specific surface area and a 90% mesopore volume. The sample contained 0.21 mmol g −1 of SO 3 H and gave a high conversion and an acceptable furfural yield and selectivity (100%, 45% and 45%, respectively) when used at 170°C for 1 h with γ-valerolactone as solvent. The catalyst was easily separated after the catalytic tests by using a magnet, confirming sufficient magneticstability. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)’.


2021 ◽  
Vol 11 (1) ◽  
pp. 74-79
Author(s):  
Linh Nguyen Le My ◽  
Hieu Bach Thi Kim

In this paper, CuO nanosheets were successfully synthesized by a simple hydrothermal method. The synthesized CuO nanosheets were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR), surface area analysis (BET). Several factors influencing the synthesis of material such as concentration of NaOH, hydrothermal temperature and hydrothermal time were studied. Scanning electron microscopy (SEM) investigation reveals that CuO nanosheets have the length of about 500 - 1000 nm. N2 adsorption–desorption isotherm experiment shows that the BET specific surface area of obtained CuO nanosheets is 12.78 m2/g.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4357
Author(s):  
Milena P. Dojcinovic ◽  
Zorka Z. Vasiljevic ◽  
Jugoslav B. Krstic ◽  
Jelena D. Vujancevic ◽  
Smilja Markovic ◽  
...  

Nickel manganite nanocrystalline fibers were obtained by electrospinning and subsequent calcination at 400 °C. As-spun fibers were characterized by TG/DTA, Scanning Electron Microscopy and FT-IR spectroscopy analysis. X-ray diffraction and FT-IR spectroscopy analysis confirmed the formation of nickel manganite with a cubic spinel structure, while N2 physisorption at 77 K enabled determination of the BET specific surface area as 25.3 m2/g and (BJH) mesopore volume as 21.5 m2/g. The material constant (B) of the nanocrystalline nickel manganite fibers applied by drop-casting on test interdigitated electrodes on alumina substrate, dried at room temperature, was determined as 4379 K in the 20–50 °C temperature range and a temperature sensitivity of −4.95%/K at room temperature (25 °C). The change of impedance with relative humidity was monitored at 25 and 50 °C for a relative humidity (RH) change of 40 to 90% in the 42 Hzπ1 MHz frequency range. At 100 Hz and 25 °C, the sensitivity of 327.36 ± 80.12 kΩ/%RH was determined, showing that nickel manganite obtained by electrospinning has potential as a multifunctional material for combined humidity and temperature sensing.


Author(s):  
Gábor Mucsi ◽  
Nóra Halyag ◽  
Tamás Kurusta ◽  
Ferenc Kristály

Abstract Mineral carbonation is a potentially attractive sequestration technology for the permanent safe disposal and immobilization of CO2. In this technology, CO2 is chemically reacted with calcium, sodium, and magnesium containing materials to form thermodynamically stable and environmentally harmless minerals, usually carbonates. In our research, mechanical activation of red mud was carried out in order to enhance its reactivity by means of mechanochemical reactions (surface activation), and its sequestration behaviour was investigated using carbon dioxide gas at 25 °C temperature and at high pressure (5 bar) in an autoclave. The reacted red mud was characterized by Fourier-transformed infrared spectrometer, scanning electron microscopy, X-ray diffraction, laser particle size analyzer, BET specific surface area measurement, and pH measurement. It was found that mechanical activation improved the CO2 sequestration ability by 1.7 wt% of red mud, as demonstrated by the above investigations. The pH of red mud slurry can be lowered by reacting it with carbon dioxide. During our measurements, the pH of the suspension decreased from 10 to 6.81. Furthermore, the carbonation process can be successfully used to decrease the amount of harmful PM10 (particles with a diameter of 10 μm or less) and PM2.5 (particles with a diameter of 2.5 μm or less) fraction. The proportion of 10 μm particles can be reduced by 40% and that of 2.5 μm by 20%. Graphic Abstract


2021 ◽  
Vol 8 (5) ◽  
pp. 202271
Author(s):  
Shengwei Wang ◽  
Xijian Li ◽  
Haiteng Xue ◽  
Zhonghui Shen ◽  
Liuyu Chen

The migration law of shale gas has a significant influence on the seepage characteristics of shale, and the flow of the gas is closely related to the pore structure. To explore the influence of shale pore parameters on permeability in different diffusion zones, the pore structure of the shale in the Niutitang Formation in Guizhou, China, was analysed based on liquid nitrogen adsorption experiments and nuclear magnetic resonance experiments. The relationship among fractal dimension, organic carbon content (TOC) and BET-specific surface area was analysed based on the fractal dimension of shale pores calculated using the Frenkel–Halsey–Hill model. Shale permeability was calculated using the Knudsen number ( Kn ) and permeability equation, and the influence of the fractal dimension and porosity in different diffusion zones on shale permeability was analysed. Previous studies have shown that: (i) the pores of shale in the Niutitang Formation, Guizhou are mainly distributed within 1–100 nm, with a small total pore volume per unit mass, average pore diameter, large BET specific surface area and porosity; (ii) fractal dimension has a negative correlation with average pore diameter and TOC content and a quadratic relationship with BET specific surface area; and (iii) permeability has a positive correlation with Kn , porosity and fractal dimension. In the transitional diffusion zone, fractal dimension and porosity have a significant impact on permeability. In the Knudsen diffusion zone, porosity has no obvious effect on permeability. The methodologies and results presented will enable more accurate characterization of the complexity of pore structures of porous media and allow further understanding of the seepage law of shale gas.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 496
Author(s):  
Wei Li ◽  
Tingting Wang ◽  
Dongdong Huang ◽  
Chan Zheng ◽  
Yuekun Lai ◽  
...  

Structural design and morphological control of semiconductors is considered to be one of the most effective ways to improve their photocatalytic degradation properties. In the present work, a hexagonal WO3·0.33H2O hierarchical microstructure (HWHMS) composed of nanorods was successfully prepared by the hydrothermal method. The morphology of the HWHMS was confirmed by field-emission scanning electron microscopy, and X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis demonstrated that the synthesized product was orthorhombic WO3·0.33H2O. Owing to the unique hierarchical microstructure, the HWHMS showed larger Brunauer–Emmett–Teller (BET) surface and narrower bandgap (1.53 eV) than the isolated WO3·0.33H2O nanorods. Furthermore, the HWHMS showed enhanced photocatalytic activity for degradation of methylene blue under visible-light irradiation compared with the isolated nanorods, which can be ascribed to the narrower bandgap, larger BET specific surface area, and orthorhombic phase structure of the HWHMS. This work provides a potential protocol for construction of tungsten trioxide counterparts and materials similar to tungsten trioxide for application in gas sensors, photocatalysts, electrochromic devices, field-emission devices, and solar-energy devices.


Sign in / Sign up

Export Citation Format

Share Document