Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schrödinger equation

2015 ◽  
Vol 53 (8) ◽  
pp. 1808-1834 ◽  
Author(s):  
Ibraheem Alolyan ◽  
T. E. Simos
Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 628-642 ◽  
Author(s):  
Rong-an LIN ◽  
Theodore E. Simos

AbstractIn this paper a four stages twelfth algebraic order symmetric two-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives is developed for the first time in the literature. For the new proposed method: (1) we will study the phase-lag analysis, (2) we will present the development of the new method, (3) the local truncation error (LTE) analysis will be studied. The analysis is based on a test problem which is the radial time independent Schrödinger equation, (4) the stability and the interval of periodicity analysis will be presented, (5) stepsize control technique will also be presented, (6) the examination of the accuracy and computational cost of the proposed algorithm which is based on the approximation of the Schrödinger equation.


2003 ◽  
Vol 14 (08) ◽  
pp. 1087-1105 ◽  
Author(s):  
ZHONGCHENG WANG ◽  
YONGMING DAI

A new twelfth-order four-step formula containing fourth derivatives for the numerical integration of the one-dimensional Schrödinger equation has been developed. It was found that by adding multi-derivative terms, the stability of a linear multi-step method can be improved and the interval of periodicity of this new method is larger than that of the Numerov's method. The numerical test shows that the new method is superior to the previous lower orders in both accuracy and efficiency and it is specially applied to the problem when an increasing accuracy is requested.


2016 ◽  
Vol 27 (05) ◽  
pp. 1650049 ◽  
Author(s):  
Junyan Ma ◽  
T. E. Simos

A hybrid tenth algebraic order two-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives are obtained in this paper. We will investigate • the construction of the method • the local truncation error (LTE) of the newly obtained method. We will also compare the lte of the newly developed method with other methods in the literature (this is called the comparative LTE analysis) • the stability (interval of periodicity) of the produced method using frequency for the scalar test equation different from the frequency used in the scalar test equation for phase-lag analysis (this is called stability analysis) • the application of the newly obtained method to the resonance problem of the Schrödinger equation. We will compare its effectiveness with the efficiency of other known methods in the literature. It will be proved that the developed method is effective for the approximate solution of the Schrödinger equation and related periodical or oscillatory initial value or boundary value problems.


Sign in / Sign up

Export Citation Format

Share Document