A new two stages tenth algebraic order symmetric six-step method with vanished phase-lag and its first and second derivatives for the solution of the radial Schrödinger equation and related problems

2016 ◽  
Vol 55 (1) ◽  
pp. 105-131 ◽  
Author(s):  
Ibraheem Alolyan ◽  
T. E. Simos
2001 ◽  
Vol 12 (07) ◽  
pp. 1035-1042 ◽  
Author(s):  
T. E. SIMOS ◽  
JESUS VIGO AGUIAR

In this paper, a new high algebraic order symmetric eight-step method is introduced. For this method, a direct formula for the computation of the phase-lag is given. Based on this formula, an eight-step symmetric method with minimal phase-lag is developed. The new method has better stability properties than the classical one. Numerical illustrations on the radial Schrödinger equation indicate that the new method is more efficient than older ones.


2016 ◽  
Vol 27 (05) ◽  
pp. 1650049 ◽  
Author(s):  
Junyan Ma ◽  
T. E. Simos

A hybrid tenth algebraic order two-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives are obtained in this paper. We will investigate • the construction of the method • the local truncation error (LTE) of the newly obtained method. We will also compare the lte of the newly developed method with other methods in the literature (this is called the comparative LTE analysis) • the stability (interval of periodicity) of the produced method using frequency for the scalar test equation different from the frequency used in the scalar test equation for phase-lag analysis (this is called stability analysis) • the application of the newly obtained method to the resonance problem of the Schrödinger equation. We will compare its effectiveness with the efficiency of other known methods in the literature. It will be proved that the developed method is effective for the approximate solution of the Schrödinger equation and related periodical or oscillatory initial value or boundary value problems.


1998 ◽  
Vol 09 (07) ◽  
pp. 1055-1071 ◽  
Author(s):  
T. E. Simos

A family of new hybrid four-step tenth algebraic order methods with phase-lag of order fourteen is developed for accurate computations of the radial Schrödinger equation. Numerical results obtained for the integration of the phase shift problem for the well known case of the Lennard-Jones potential and for the numerical solution of the coupled equations arising from the Schrödinger equation show that these new methods are better than other finite difference methods.


2011 ◽  
Vol 22 (02) ◽  
pp. 133-153 ◽  
Author(s):  
G. A. PANOPOULOS ◽  
Z. A. ANASTASSI ◽  
T. E. SIMOS

A new general multistep predictor-corrector (PC) pair form is introduced for the numerical integration of second-order initial-value problems. Using this form, a new symmetric eight-step predictor-corrector method with minimal phase-lag and algebraic order ten is also constructed. The new method is based on the multistep symmetric method of Quinlan–Tremaine,1 with eight steps and 8th algebraic order and is constructed to solve numerically the radial time-independent Schrödinger equation. It can also be used to integrate related IVPs with oscillating solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. We measure the efficiency of the methods and conclude that the new method with minimal phase-lag is the most efficient of all the compared methods and for all the problems solved.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
T. E. Simos

We use a methodology of optimization of the efficiency of a hybrid two-step method for the numerical solution of the radial Schrödinger equation and related problems with periodic or oscillating solutions. More specifically, we study how the vanishing of the phase-lag and its derivatives optimizes the efficiency of the hybrid two-step method.


Sign in / Sign up

Export Citation Format

Share Document