scholarly journals A Cartesian Embedded Boundary Method for the Compressible Navier-Stokes Equations

2009 ◽  
Vol 41 (1) ◽  
pp. 94-117 ◽  
Author(s):  
Marco Kupiainen ◽  
Björn Sjögreen
Author(s):  
Daniel Graves ◽  
Phillip Colella ◽  
David Modiano ◽  
Jeffrey Johnson ◽  
Bjorn Sjogreen ◽  
...  

Author(s):  
Karim M. Ali ◽  
Mohamed Madbouli ◽  
Hany M. Hamouda ◽  
Amr Guaily

This work introduces an immersed boundary method for two-dimensional simulation of incompressible Navier-Stokes equations. The method uses flow field mapping on the immersed boundary and performs a contour integration to calculate immersed boundary forces. This takes into account the relative location of the immersed boundary inside the background grid elements by using inverse distance weights, and also considers the curvature of the immersed boundary edges. The governing equations of the fluid mechanics are solved using a Galerkin-Least squares finite element formulation. The model is validated against a stationary and a vertically oscillating circular cylinder in a cross flow. The results of the model show acceptable accuracy when compared to experimental and numerical results.


2020 ◽  
Vol 310 ◽  
pp. 00044
Author(s):  
Juraj Mužík

The paper presents the use of the dual reciprocity multidomain singular boundary method (SBMDR) for the solution of the laminar viscous flow problem described by Navier-Stokes equations. A homogeneous part of the solution is solved using a singular boundary method with the 2D Stokes fundamental solution - Stokeslet. The dual reciprocity approach has been chosen because it is ideal for the treatment of the nonhomogeneous and nonlinear terms of Navier-Stokes equations. The presented SBMDR approach to the solution of the 2D flow problem is demonstrated on a standard benchmark problem - lid-driven cavity.


2017 ◽  
Vol 39 (2) ◽  
pp. 109-119
Author(s):  
Cuong Q. Le ◽  
H. Phan-Duc ◽  
Son H. Nguyen

In this paper, a combination of the Proper Generalized  Decomposition (PGD) with the Immersed Boundary method (IBM) for solving  fluid-filament interaction problem is proposed. In this combination, a  forcing term constructed by the IBM is introduced to Navier-Stokes equations  to handle the influence of the filament on the fluid flow. The PGD is  applied to solve the Poission's equation to find the fluid pressure  distribution for each time step. The numerical results are compared with  those by previous publications to illustrate the robustness and  effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document