Accurate Computations with Collocation and Wronskian Matrices of Jacobi Polynomials

2021 ◽  
Vol 87 (3) ◽  
Author(s):  
E. Mainar ◽  
J. M. Peña ◽  
B. Rubio
Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 74
Author(s):  
Waleed Mohamed Abd-Elhameed ◽  
Afnan Ali

The main purpose of the current article is to develop new specific and general linearization formulas of some classes of Jacobi polynomials. The basic idea behind the derivation of these formulas is based on reducing the linearization coefficients which are represented in terms of the Kampé de Fériet function for some particular choices of the involved parameters. In some cases, the required reduction is performed with the aid of some standard reduction formulas for certain hypergeometric functions of unit argument, while, in other cases, the reduction cannot be done via standard formulas, so we resort to certain symbolic algebraic computation, and specifically the algorithms of Zeilberger, Petkovsek, and van Hoeij. Some new linearization formulas of ultraspherical polynomials and third-and fourth-kinds Chebyshev polynomials are established.


2021 ◽  
Vol 111 (2) ◽  
Author(s):  
Aleksey Kostenko

AbstractFor the discrete Laguerre operators we compute explicitly the corresponding heat kernels by expressing them with the help of Jacobi polynomials. This enables us to show that the heat semigroup is ultracontractive and to compute the corresponding norms. On the one hand, this helps us to answer basic questions (recurrence, stochastic completeness) regarding the associated Markovian semigroup. On the other hand, we prove the analogs of the Cwiekel–Lieb–Rosenblum and the Bargmann estimates for perturbations of the Laguerre operators, as well as the optimal Hardy inequality.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1573
Author(s):  
Waleed Mohamed Abd-Elhameed ◽  
Badah Mohamed Badah

This article deals with the general linearization problem of Jacobi polynomials. We provide two approaches for finding closed analytical forms of the linearization coefficients of these polynomials. The first approach is built on establishing a new formula in which the moments of the shifted Jacobi polynomials are expressed in terms of other shifted Jacobi polynomials. The derived moments formula involves a hypergeometric function of the type 4F3(1), which cannot be summed in general, but for special choices of the involved parameters, it can be summed. The reduced moments formulas lead to establishing new linearization formulas of certain parameters of Jacobi polynomials. Another approach for obtaining other linearization formulas of some Jacobi polynomials depends on making use of the connection formulas between two different Jacobi polynomials. In the two suggested approaches, we utilize some standard reduction formulas for certain hypergeometric functions of the unit argument such as Watson’s and Chu-Vandermonde identities. Furthermore, some symbolic algebraic computations such as the algorithms of Zeilberger, Petkovsek and van Hoeij may be utilized for the same purpose. As an application of some of the derived linearization formulas, we propose a numerical algorithm to solve the non-linear Riccati differential equation based on the application of the spectral tau method.


Author(s):  
Jannike Solsvik ◽  
Hugo Jakobsen

Two numerical methods in the family of weighted residual methods; the orthogonal collocation and least squares methods, are used within the spectral framework to solve a linear reaction-diffusion pellet problem with slab and spherical geometries. The node points are in this work taken as the roots of orthogonal polynomials in the Jacobi family. Two Jacobi polynomial parameters, alpha and beta, can be used to tune the distribution of the roots within the domain. Further, the internal points and the boundary points of the boundary-value problem can be given according to: i) Gauss-Lobatto-Jacobi points, or ii) Gauss-Jacobi points plus the boundary points. The objective of this paper is thus to investigate the influence of the distribution of the node points within the domain adopting the orthogonal collocation and least squares methods. Moreover, the results of the two numerical methods are compared to examine whether the methods show the same sensitivity and accuracy to the node point distribution. The notifying findings are as follows: i) The Legendre polynomial, i.e., alpha=beta=0, is a very robust Jacobi polynomial giving the better condition number of the coefficient matrix and the polynomial also give good behavior of the error as a function of polynomial order. This polynomial gives good results for small and large gradients within both slab and spherical pellet geometries. This trend is observed for both of the weighted residual methods applied. ii) Applying the least squares method the error decreases faster with increasing polynomial order than observed with the orthogonal collocation method. However, the orthogonal collocation method is not so sensitive to the choice of Jacobi polynomial and the method also obtains lower error values than the least squares method due to favorable lower condition numbers of the coefficient matrices. Thus, for this particular problem, the orthogonal collocation method is recommended above the least squares method. iii) The orthogonal collocation method show minor differences between Gauss-Lobatto-Jacobi points and Gauss-Jacobi plus boundary points.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
W. M. Abd-Elhameed

This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms.


Sign in / Sign up

Export Citation Format

Share Document