Singularly Perturbed Reaction–Diffusion Problems as First order systems
AbstractWe consider a singularly perturbed reaction diffusion problem as a first order two-by-two system. Using piecewise discontinuous polynomials for the first component and $$H_{{{\,\mathrm{{div}}\,}}}$$ H div -conforming elements for the second component we provide a convergence analysis on layer adapted meshes and an optimal convergence order in a balanced norm that is comparable with a balanced $$H^2$$ H 2 -norm for the second order formulation.