Lessons from the 2003 Tokachi-oki, Japan, earthquake for prediction of long-period strong ground motions and sloshing damage to oil storage tanks

2007 ◽  
Vol 12 (2) ◽  
pp. 255-263 ◽  
Author(s):  
Ken Hatayama
Author(s):  
Shinsaku Zama

The 2003 Tokachi-oki earthquake caused the severe damage to oil storage tanks by liquid sloshing. Especially at Tomakomai, two tank fires broke out and six floating roofs sank. Seismograms showed that long-period motions were predominant and duration became longer when the seismic waves propagated into the Yufutsu Plain, where Tomakomai is located. Sloshing wave heights (Wh) of all tanks were calculated by two-dimensional response analysis. It was found that estimated Wh exceeded 3 m at periods 5 and 7.5 sec, and exceeded 2m from 3.5 to 9 sec of sloshing period and that severe damaged tanks had the highest Wh at each period in general.


2011 ◽  
Vol 243-249 ◽  
pp. 170-177
Author(s):  
Peng Pan ◽  
Yu Zhang ◽  
Shi Yan Song ◽  
Lie Ping Ye

The maximum and residual deformations of structures subjected to strong ground motions are the most importance indexes, particularly under the performance-based design framework, thus understanding the influencing factors is of great importance to seismic design. In this study, single degree of freedom (SDOF) systems with varying structural properties are analyzed using a series of strong ground motions from FEM/SAC project. The influences of three structural parameters, i.e., yield force, second stiffness after yielding, and stiffness degradation, on the maximum and residual deformations are investigated based on the statistics of the analysis results. The analysis results suggest the follows: (1) larger yield forces lead to smaller residual and maximum deformations for short period structures, and they lead to smaller residual deformations but no necessarily smaller maximum deformation for intermediate and long period structures; (2) larger second stiffness lead to smaller residual and maximum deformations for short period structures, and they lead to smaller residual deformations but no necessarily smaller maximum deformation for intermediate and long period structures; (3) smaller stiffness degradation index leads to smaller maximum deformations but larger residual deformations.


Author(s):  
Ken HATAYAMA ◽  
Shinsaku ZAMA ◽  
Haruki NISHI ◽  
Minoru YAMADA ◽  
Yoshihiro HIROKAWA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document