Active folding in the Tenes region (Tell Atlas, Algeria): modelling the 1922 earthquake fault-related fold (Mw 6.2)

Author(s):  
Souhila Bagdi-Issaad ◽  
Mustapha Meghraoui ◽  
Ahmed Nedjari
2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Kazutoshi Imanishi ◽  
Makiko Ohtani ◽  
Takahiko Uchide

Abstract A driving stress of the Mw5.8 reverse-faulting Awaji Island earthquake (2013), southwest Japan, was investigated using focal mechanism solutions of earthquakes before and after the mainshock. The seismic records from regional high-sensitivity seismic stations were used. Further, the stress tensor inversion method was applied to infer the stress fields in the source region. The results of the stress tensor inversion and the slip tendency analysis revealed that the stress field within the source region deviates from the surrounding area, in which the stress field locally contains a reverse-faulting component with ENE–WSW compression. This local fluctuation in the stress field is key to producing reverse-faulting earthquakes. The existing knowledge on regional-scale stress (tens to hundreds of km) cannot predict the occurrence of the Awaji Island earthquake, emphasizing the importance of estimating local-scale (< tens of km) stress information. It is possible that the local-scale stress heterogeneity has been formed by local tectonic movement, i.e., the formation of flexures in combination with recurring deep aseismic slips. The coseismic Coulomb stress change, induced by the disastrous 1995 Mw6.9 Kobe earthquake, increased along the fault plane of the Awaji Island earthquake; however, the postseismic stress change was negative. We concluded that the gradual stress build-up, due to the interseismic plate locking along the Nankai trough, overcame the postseismic stress reduction in a few years, pushing the Awaji Island earthquake fault over its failure threshold in 2013. The observation that the earthquake occurred in response to the interseismic plate locking has an important implication in terms of seismotectonics in southwest Japan, facilitating further research on the causal relationship between the inland earthquake activity and the Nankai trough earthquake. Furthermore, this study highlighted that the dataset before the mainshock may not have sufficient information to reflect the stress field in the source region due to the lack of earthquakes in that region. This is because the earthquake fault is generally locked prior to the mainshock. Further research is needed for estimating the stress field in the vicinity of an earthquake fault via seismicity before the mainshock alone.


1999 ◽  
Vol 308 (1-2) ◽  
pp. 249-261 ◽  
Author(s):  
M. Fytikas ◽  
S. Lombardi ◽  
M. Papachristou ◽  
S. Pavlides ◽  
N. Zouros ◽  
...  

1996 ◽  
Vol 101 (B12) ◽  
pp. 27741-27764 ◽  
Author(s):  
Jean Schmittbuhl ◽  
Jean-Pierre Vilotte ◽  
Stéphane Roux
Keyword(s):  

Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 139
Author(s):  
Giancarlo Molli ◽  
Isabelle Manighetti ◽  
Rick Bennett ◽  
Jacques Malavieille ◽  
Enrico Serpelloni ◽  
...  

Based on the review of the available stratigraphic, tectonic, morphological, geodetic, and seismological data, along with new structural observations, we present a reappraisal of the potential seismogenic faults and fault systems in the inner northwest Apennines, Italy, which was the site, one century ago, of the devastating Mw ~6.5, 1920 Fivizzano earthquake. Our updated fault catalog provides the fault locations, as well as the description of their architecture, large-scale segmentation, cumulative displacements, evidence for recent to present activity, and long-term slip rates. Our work documents that a dense network of active faults, and thus potential earthquake fault sources, exists in the region. We discuss the seismogenic potential of these faults, and propose a general tectonic scenario that might account for their development.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 385 ◽  
Author(s):  
Li-Wei Kuo ◽  
Jyh-Rou Huang ◽  
Jiann-Neng Fang ◽  
Jialiang Si ◽  
Haibing Li ◽  
...  

Graphitization of carbonaceous materials (CM) has been experimentally demonstrated as potential evidence of seismic slip within a fault gouge. The southern segment of the Longmenshan fault, a CM-rich-gouge fault, accommodated coseismic slip during the 2008 Mw 7.9 Wenchuan earthquake and potentially preserves a record of processes that occurred on the fault during the slip event. Here, we present a multi-technique characterization of CM within the active fault zone of the Longmenshan fault from the Wenchuan earthquake Fault Scientific Drilling-1. By contrast with field observations, graphite is pervasively and only distributed in the gouge zone, while heterogeneously crystallized CM are present in the surrounding breccia. The composite dataset that is presented, which includes the localized graphite layer along the 2008 Wenchuan earthquake principal slip zone, demonstrates that graphite is widely distributed within the active fault zone. The widespread occurrence of graphite, a seismic slip indicator, reveals that surface rupturing events commonly occur along the Longmenshan fault and are characteristic of this tectonically active region.


Sign in / Sign up

Export Citation Format

Share Document