scholarly journals Asymptotic Correlations in Gapped and Critical Topological Phases of 1D Quantum Systems

2019 ◽  
Vol 175 (6) ◽  
pp. 1164-1213 ◽  
Author(s):  
N. G. Jones ◽  
R. Verresen
2019 ◽  
Vol 26 (03) ◽  
pp. 1950012 ◽  
Author(s):  
Manuel Asorey ◽  
Paolo Facchi ◽  
Giuseppe Marmo

The role of mixed states in topological quantum matter is less known than that of pure quantum states. Generalisations of topological phases appearing in pure states have received attention in the literature only quite recently. In particular, it is still unclear whether the generalisation of the Aharonov–Anandan phase for mixed states due to Uhlmann plays any physical role in the behaviour of the quantum systems. We analyse, from a general viewpoint, topological phases of mixed states and the robustness of their invariance. In particular, we analyse the role of these phases in the behaviour of systems with periodic symmetry and their evolution under the influence of an environment preserving its crystalline symmetries.


2019 ◽  
Vol 6 (2) ◽  
Author(s):  
Moos van Caspel ◽  
Sergio Enrique Tapias Arze ◽  
Isaac Pérez Castillo

We investigate the effects of dissipation and driving on topological order in superconducting nanowires. Rather than studying the non-equilibrium steady state, we propose a method to classify and detect dynamical signatures of topological order in open quantum systems. Bulk winding numbers for the Lindblad generator \hat{\mathcal{L}}ℒ̂ of the dissipative Kitaev chain are found to be linked to the presence of Majorana edge master modes – localized eigenmodes of \hat{\mathcal{L}}ℒ̂. Despite decaying in time, these modes provide dynamical fingerprints of the topological phases of the closed system, which are now separated by intermediate regions where winding numbers are ill-defined and the bulk-boundary correspondence breaks down. Combining these techniques with the Floquet formalism reveals higher winding numbers and different types of edge modes under periodic driving. Finally, we link the presence of edge modes to a steady state current.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tanay Nag ◽  
Bitan Roy

AbstractElectronic bands featuring nontrivial bulk topological invariant manifest through robust gapless modes at the boundaries, e.g., edges and surfaces. As such this bulk-boundary correspondence is also operative in driven quantum materials. For example, a suitable periodic drive can convert a trivial insulator into a Floquet topological insulator (FTI) that accommodates nondissipative dynamic gapless modes at the interfaces with vacuum. Here we theoretically demonstrate that dislocations, ubiquitous lattice defects in crystals, can probe FTIs as well as unconventional π-trivial insulator in the bulk of driven quantum systems by supporting normal and anomalous modes, localized near the defect core. Respectively, normal and anomalous dislocation modes reside at the Floquet zone center and boundaries. We exemplify these outcomes specifically for two-dimensional (2D) Floquet Chern insulator and px + ipy superconductor, where the dislocation modes are respectively constituted by charged and neutral Majorana fermions. Our findings should be, therefore, instrumental in probing Floquet topological phases in the state-of-the-art experiments in driven quantum crystals, cold atomic setups, and photonic and phononic metamaterials through bulk topological lattice defects.


10.33540/70 ◽  
2020 ◽  
Author(s):  
◽  
Sander Hein Kooi
Keyword(s):  

1993 ◽  
Vol 163 (9) ◽  
pp. 1 ◽  
Author(s):  
B.D. Agap'ev ◽  
M.B. Gornyi ◽  
B.G. Matisov ◽  
Yu.V. Rozhdestvenskii

2018 ◽  
Vol 189 (05) ◽  
Author(s):  
Vladislav Yu. Shishkov ◽  
Evgenii S. Andrianov ◽  
Aleksandr A. Pukhov ◽  
Aleksei P. Vinogradov ◽  
A.A. Lisyansky

Author(s):  
Richard Healey

Often a pair of quantum systems may be represented mathematically (by a vector) in a way each system alone cannot: the mathematical representation of the pair is said to be non-separable: Schrödinger called this feature of quantum theory entanglement. It would reflect a physical relation between a pair of systems only if a system’s mathematical representation were to describe its physical condition. Einstein and colleagues used an entangled state to argue that its quantum state does not completely describe the physical condition of a system to which it is assigned. A single physical system may be assigned a non-separable quantum state, as may a large number of systems, including electrons, photons, and ions. The GHZ state is an example of an entangled polarization state that may be assigned to three photons.


Sign in / Sign up

Export Citation Format

Share Document