Existence Theorems for Systems of Generalized Vector Quasiequilibrium Problems and Optimization Problems

2006 ◽  
Vol 130 (3) ◽  
pp. 463-477 ◽  
Author(s):  
L. J. Lin ◽  
Y. H. Liu
2019 ◽  
Vol 15 (3) ◽  
pp. 48
Author(s):  
Nguyen Xuan Hai ◽  
Nguyen Van Hung

In this paper, we establish some existence theorems for vector quasiequilibrium problems in real locally convex Hausdorff topological vector spaces by using Kakutani-Fan-Glicksberg fixed-point theorem. Moreover, we also discuss the closedness of the solution sets for these problems. The results presented in the paper are new and improve some main results in the literature.


2018 ◽  
Vol 34 (1) ◽  
pp. 115-122
Author(s):  
NGUYEN VAN HUNG ◽  
◽  
DINH HUY HOANG ◽  
VO MINH TAM ◽  
◽  
...  

In this paper, we study vector quasiequilibrium problems. After that, the Painlev´e-Kuratowski upper convergence, lower convergence and convergence of the approximate solution sets for these problems are investigated by using a sequence of mappings ΓC -converging. As applications, we also consider the Painlev´e-Kuratowski upper convergence of the approximate solution sets in the special cases of variational inequality problems of the Minty type and Stampacchia type. The results presented in this paper extend and improve some main results in the literature.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Shu-qiang Shan ◽  
Yu Han ◽  
Nan-jing Huang

We establish the upper semicontinuity of solution mappings for a class of parametric generalized vector quasiequilibrium problems. As applications, we obtain the upper semicontinuity of solution mappings to several problems, such as parametric optimization problem, parametric saddle point problem, parametric Nash equilibria problem, parametric variational inequality, and parametric equilibrium problem.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Qi-Qing Song

In a topological sup-semilattice, we established a new existence result for vector quasiequilibrium problems. By the analysis of essential stabilities of maximal elements in a topological sup-semilattice, we prove that for solutions of each vector quasi-equilibrium problem, there exists a connected minimal essential set which can resist the perturbation of the vector quasi-equilibrium problem.


2009 ◽  
Vol 2009 ◽  
pp. 1-10
Author(s):  
Jian-Wen Peng ◽  
Lun Wan

We introduce a new system of generalized vector quasiequilibrium problems which includes system of vector quasiequilibrium problems, system of vector equilibrium problems, and vector equilibrium problems, and so forth in literature as special cases. We prove the existence of solutions for this system of generalized vector quasi-equilibrium problems. Consequently, we derive some existence results of a solution for the system of generalized quasi-equilibrium problems and the generalized Debreu-type equilibrium problem for both vector-valued functions and scalar-valued functions.


Author(s):  
Mikhail I. Sumin

The paper is devoted to the regularization of the classical optimality conditions (COC) — the Lagrange principle and the Pontryagin maximum principle in a convex optimal control problem for a parabolic equation with an operator (pointwise state) equality-constraint at the final time. The problem contains distributed, initial and boundary controls, and the set of its admissible controls is not assumed to be bounded. In the case of a specific form of the quadratic quality functional, it is natural to interpret the problem as the inverse problem of the final observation to find the perturbing effect that caused this observation. The main purpose of regularized COCs is stable generation of minimizing approximate solutions (MAS) in the sense of J. Warga. Regularized COCs are: 1) formulated as existence theorems of the MASs in the original problem with a simultaneous constructive representation of specific MASs; 2) expressed in terms of regular classical Lagrange and Hamilton–Pontryagin functions; 3) are sequential generalizations of the COCs and retain the general structure of the latter; 4) “overcome” the ill-posedness of the COCs, are regularizing algorithms for solving optimization problems, and form the theoretical basis for the stable solving modern meaningful ill-posed optimization and inverse problems.


Sign in / Sign up

Export Citation Format

Share Document