topological vector spaces
Recently Published Documents


TOTAL DOCUMENTS

594
(FIVE YEARS 53)

H-INDEX

27
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2629
Author(s):  
Félix Martínez-Giménez ◽  
Alfred Peris ◽  
Francisco Rodenas

Given a continuous map f:X→X on a metric space, it induces the maps f¯:K(X)→K(X), on the hyperspace of nonempty compact subspaces of X, and f^:F(X)→F(X), on the space of normal fuzzy sets, consisting of the upper semicontinuous functions u:X→[0,1] with compact support. Each of these spaces can be endowed with a respective metric. In this work, we studied the relationships among the dynamical systems (X,f), (K(X),f¯), and (F(X),f^). In particular, we considered several dynamical properties related to chaos: Devaney chaos, A-transitivity, Li–Yorke chaos, and distributional chaos, extending some results in work by Jardón, Sánchez and Sanchis (Mathematics 2020, 8, 1862) and work by Bernardes, Peris and Rodenas (Integr. Equ. Oper. Theory 2017, 88, 451–463). Especial attention is given to the dynamics of (continuous and linear) operators on metrizable topological vector spaces (linear dynamics).


2021 ◽  
Vol 1897 (1) ◽  
pp. 012037
Author(s):  
Intesar Harbi ◽  
Z D Al-Nafie

2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Emrah Karaman ◽  

In this work, interval-valued optimization problems are considered. The ordering cone is used to generalize the interval-valued optimization problems on real topological vector spaces. Some definitions and their properties are obtained for intervals, defined via an ordering cone. Gerstewitz's function is used to derive scalarization for the interval-valued optimization problems. Also, two subdifferentials for interval-valued functions are introduced by using subgradients. Some necessary optimality conditions are obtained via subdifferentials and scalarization. An example is given to demonstrate the results.


Author(s):  
Özgür Evren ◽  
Farhad Hüsseinov

Consider a dominance relation (a preorder) ≿ on a topological space X, such as the greater than or equal to relation on a function space or a stochastic dominance relation on a space of probability measures. Given a compact set K ⊆ X, we study when a continuous real function on K that is strictly monotonic with respect to ≿ can be extended to X without violating the continuity and monotonicity conditions. We show that such extensions exist for translation invariant dominance relations on a large class of topological vector spaces. Translation invariance or a vector structure are no longer needed when X is locally compact and second countable. In decision theoretic exercises, our extension theorems help construct monotonic utility functions on the universal space X starting from compact subsets. To illustrate, we prove several representation theorems for revealed or exogenously given preferences that are monotonic with respect to a dominance relation.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 466
Author(s):  
Francisco Javier García-Pacheco ◽  
Soledad Moreno-Pulido ◽  
Enrique Naranjo-Guerra ◽  
Alberto Sánchez-Alzola

Inner structure appeared in the literature of topological vector spaces as a tool to characterize the extremal structure of convex sets. For instance, in recent years, inner structure has been used to provide a solution to The Faceless Problem and to characterize the finest locally convex vector topology on a real vector space. This manuscript goes one step further by settling the bases for studying the inner structure of non-convex sets. In first place, we observe that the well behaviour of the extremal structure of convex sets with respect to the inner structure does not transport to non-convex sets in the following sense: it has been already proved that if a face of a convex set intersects the inner points, then the face is the whole convex set; however, in the non-convex setting, we find an example of a non-convex set with a proper extremal subset that intersects the inner points. On the opposite, we prove that if a extremal subset of a non-necessarily convex set intersects the affine internal points, then the extremal subset coincides with the whole set. On the other hand, it was proved in the inner structure literature that isomorphisms of vector spaces and translations preserve the sets of inner points and outer points. In this manuscript, we show that in general, affine maps and convex maps do not preserve inner points. Finally, by making use of the inner structure, we find a simple proof of the fact that a convex and absorbing set is a neighborhood of 0 in the finest locally convex vector topology. In fact, we show that in a convex set with internal points, the subset of its inner points coincides with the subset of its internal points, which also coincides with its interior with respect to the finest locally convex vector topology.


2021 ◽  
Vol 7 ◽  
pp. 20-36
Author(s):  
Raja Mohammad Latif

In 2016 A. Devika and A. Thilagavathi introduced a new class of sets called M*-open sets and investigated some properties of these sets in topological spaces. In this paper, we introduce and study a new class of spaces, namely M*-irresolute topological vector spaces via M*-open sets. We explore and investigate several properties and characterizations of this new notion of M*-irresolute topological vector space. We give several characterizations of M*-Hausdorff space. Moreover, we show that the extreme point of the convex subset of M*-irresolute topological vector space X lies on the boundary.


Sign in / Sign up

Export Citation Format

Share Document