On the Completeness of the System of Projections for the Tensor Product Decomposition of Continuous Series Representations of the Group SL(2, ℝ)

2019 ◽  
Vol 242 (5) ◽  
pp. 692-700
Author(s):  
A. V. Ivanov
Axioms ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 82 ◽  
Author(s):  
Namhee Kwon

We explicitly calculate the branching functions arising from the tensor product decompositions between level 2 and principal admissible representations over sl ^ 2 . In addition, investigating the characters of the minimal series representations of super-Virasoro algebras, we present the tensor product decompositions in terms of the minimal series representations of super-Virasoro algebras for the case of principal admissible weights.


Author(s):  
A. Ohashi ◽  
T.S. Usuda ◽  
T. Sogabe ◽  
F. Yilmaz

10.37236/438 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
François Bergeron ◽  
Aaron Lauve

We analyze the structure of the algebra $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action" of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. Résumé. Nous analysons la structure de l'algèbre $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ des polynômes symétriques en des variables non-commutatives pour obtenir des analogues des résultats classiques concernant la structure de l'anneau $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ des polynômes symétriques en des variables commutatives. Plus précisément, au moyen de "l'action par positions", on réalise $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ comme sous-module de $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$. On découvre alors une nouvelle décomposition de $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ comme produit tensorial, obtenant ainsi un analogues des théorèmes classiques de Chevalley et Shephard-Todd.


1989 ◽  
Vol 160 (4) ◽  
pp. 423-431
Author(s):  
Frederick A. Senese ◽  
Christopher A. Beattie ◽  
John C. Schug ◽  
Jimmy W. Viers ◽  
Layne T. Watson

2013 ◽  
Vol 24 (08) ◽  
pp. 1350066 ◽  
Author(s):  
MARIE CHODA

In order to give numerical characterizations of the notion of "mutual orthogonality", we introduce two kinds of family of positive definite matrices for a unitary u in a finite von Neumann algebra M. They are arising from u naturally depending on the decompositions of M. One corresponds to the tensor product decomposition and the other does to the crossed product decomposition. By using the von Neumann entropy for these positive definite matrices, we characterize the notion of mutual orthogonality between subalgebras.


2005 ◽  
Vol 12 (02) ◽  
pp. 179-188 ◽  
Author(s):  
Paweł Caban ◽  
Krzysztof Podlaski ◽  
Jakub Rembieliński ◽  
Kordian A. Smoliński ◽  
Zbigniew Walczak

We consider the two-fermion system whose states are subjected to the superselection rule forbidding the superposition of states with fermionic and bosonic statistics. This implies that separable states are described only by diagonal density matrices. Moreover, we find the explicit formula for the entanglement of formation, which in this case cannot be calculated properly using Wootters's concurrence. We also discuss the problem of the choice of tensor product decomposition in a system of two fermions with the help of Bogoliubov transformations of creation and annihilation operators. Finally, we show that there exist states which are separable with respect to all tensor product decompositions of the underlying Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document