Tensor Product Decomposition, Entanglement, and Bogoliubov Transformations for Two Fermion System
We consider the two-fermion system whose states are subjected to the superselection rule forbidding the superposition of states with fermionic and bosonic statistics. This implies that separable states are described only by diagonal density matrices. Moreover, we find the explicit formula for the entanglement of formation, which in this case cannot be calculated properly using Wootters's concurrence. We also discuss the problem of the choice of tensor product decomposition in a system of two fermions with the help of Bogoliubov transformations of creation and annihilation operators. Finally, we show that there exist states which are separable with respect to all tensor product decompositions of the underlying Hilbert space.