scholarly journals Meta-inferences and Supervaluationism

Author(s):  
Luca Incurvati ◽  
Julian J. Schlöder

AbstractMany classically valid meta-inferences fail in a standard supervaluationist framework. This allegedly prevents supervaluationism from offering an account of good deductive reasoning. We provide a proof system for supervaluationist logic which includes supervaluationistically acceptable versions of the classical meta-inferences. The proof system emerges naturally by thinking of truth as licensing assertion, falsity as licensing negative assertion and lack of truth-value as licensing rejection and weak assertion. Moreover, the proof system respects well-known criteria for the admissibility of inference rules. Thus, supervaluationists can provide an account of good deductive reasoning. Our proof system moreover brings to light how one can revise the standard supervaluationist framework to make room for higher-order vagueness. We prove that the resulting logic is sound and complete with respect to the consequence relation that preserves truth in a model of the non-normal modal logic NT. Finally, we extend our approach to a first-order setting and show that supervaluationism can treat vagueness in the same way at every order. The failure of conditional proof and other meta-inferences is a crucial ingredient in this treatment and hence should be embraced, not lamented.


2021 ◽  
pp. 14-52
Author(s):  
Cian Dorr ◽  
John Hawthorne ◽  
Juhani Yli-Vakkuri

This chapter presents the system of classical higher-order modal logic which will be employed throughout this book. Nothing more than a passing familiarity with classical first-order logic and standard systems of modal logic is presupposed. We offer some general remarks about the kind of commitment involved in endorsing this logic, and motivate some of its more non-standard features. We also discuss how talk about possible worlds can be represented within the system.



Author(s):  
Petar Vukmirović ◽  
Alexander Bentkamp ◽  
Jasmin Blanchette ◽  
Simon Cruanes ◽  
Visa Nummelin ◽  
...  

AbstractSuperposition is among the most successful calculi for first-order logic. Its extension to higher-order logic introduces new challenges such as infinitely branching inference rules, new possibilities such as reasoning about formulas, and the need to curb the explosion of specific higher-order rules. We describe techniques that address these issues and extensively evaluate their implementation in the Zipperposition theorem prover. Largely thanks to their use, Zipperposition won the higher-order division of the CASC-J10 competition.



2016 ◽  
Vol 81 (1) ◽  
pp. 284-315 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
NICK BEZHANISHVILI ◽  
ROSALIE IEMHOFF

AbstractWe introduce stable canonical rules and prove that each normal modal multi-conclusion consequence relation is axiomatizable by stable canonical rules. We apply these results to construct finite refutation patterns for modal formulas, and prove that each normal modal logic is axiomatizable by stable canonical rules. We also define stable multi-conclusion consequence relations and stable logics and prove that these systems have the finite model property. We conclude the paper with a number of examples of stable and nonstable systems, and show how to axiomatize them.



10.29007/dzc2 ◽  
2018 ◽  
Author(s):  
Max Wisniewski ◽  
Alexander Steen

In this paper, we present an embedding of higher-order nominal modal logicinto classical higher-order logic, and study its automation. There exists no automated theorem prover for first-order or higher-order nominal logic at the moment, hence, this is the first automation for this kind of logic.In our work, we focus on nominal tense logic and have successfully proven some first theorems.



10.29007/jsb9 ◽  
2018 ◽  
Author(s):  
Tobias Gleißner ◽  
Alexander Steen ◽  
Christoph Benzmüller

We present a procedure for algorithmically embedding problems formulated in higher- order modal logic into classical higher-order logic. The procedure was implemented as a stand-alone tool and can be used as a preprocessor for turning TPTP THF-compliant the- orem provers into provers for various modal logics. The choice of the concrete modal logic is thereby specified within the problem as a meta-logical statement. This specification for- mat as well as the underlying semantics parameters are discussed, and the implementation and the operation of the tool are outlined.By combining our tool with one or more THF-compliant theorem provers we accomplish the most widely applicable modal logic theorem prover available to date, i.e. no other available prover covers more variants of propositional and quantified modal logics. Despite this generality, our approach remains competitive, at least for quantified modal logics, as our experiments demonstrate.



2015 ◽  
Vol 8 (3) ◽  
pp. 467-487 ◽  
Author(s):  
SHAWN STANDEFER

AbstractWe present an extension of the basic revision theory of circular definitions with a unary operator, □. We present a Fitch-style proof system that is sound and complete with respect to the extended semantics. The logic of the box gives rise to a simple modal logic, and we relate provability in the extended proof system to this modal logic via a completeness theorem, using interpretations over circular definitions, analogous to Solovay’s completeness theorem forGLusing arithmetical interpretations. We adapt our proof to a special class of circular definitions as well as to the first-order case.





1993 ◽  
Vol 3 (2) ◽  
pp. 123-152 ◽  
Author(s):  
John Hannan

AbstractWe extend the definition of natural semantics to include simply typed λ-terms, instead of first-order terms, for representing programs, and to include inference rules for the introduction and discharge of hypotheses and eigenvariables. This extension, which we call extended natural semantics, affords a higher-level notion of abstract syntax for representing programs and suitable mechanisms for manipulating this syntax. We present several examples of semantic specifications for a simple functional programming language and demonstrate how we achieve simple and elegant manipulations of bound variables in functional programs. All the examples have been implemented and tested in λProlog, a higher-order logic programming language that supports all of the features of extended natural semantics.



10.29007/xgc6 ◽  
2018 ◽  
Author(s):  
Radu Iosif ◽  
Cristina Serban

In this paper we develop a cyclic proof system for the problem of inclusion between the least sets of models of mutually recursive predicates, when the ground constraints in the inductive definitions are quantifier-free formulae of first order logic. The proof system consists of a small set of inference rules, inspired by a top-down language inclusion algorithm for tree automata [9]. We show the proof system to be sound, in general, and complete, under certain semantic restrictions involving the set of constraints in the inductive system. Moreover, we investigate the computational complexity of checking these restrictions, when the function symbols in the logic are given the canonical Herbrand interpretation.



2019 ◽  
Vol 42 ◽  
Author(s):  
Daniel J. Povinelli ◽  
Gabrielle C. Glorioso ◽  
Shannon L. Kuznar ◽  
Mateja Pavlic

Abstract Hoerl and McCormack demonstrate that although animals possess a sophisticated temporal updating system, there is no evidence that they also possess a temporal reasoning system. This important case study is directly related to the broader claim that although animals are manifestly capable of first-order (perceptually-based) relational reasoning, they lack the capacity for higher-order, role-based relational reasoning. We argue this distinction applies to all domains of cognition.



Sign in / Sign up

Export Citation Format

Share Document