scholarly journals STABLE CANONICAL RULES

2016 ◽  
Vol 81 (1) ◽  
pp. 284-315 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
NICK BEZHANISHVILI ◽  
ROSALIE IEMHOFF

AbstractWe introduce stable canonical rules and prove that each normal modal multi-conclusion consequence relation is axiomatizable by stable canonical rules. We apply these results to construct finite refutation patterns for modal formulas, and prove that each normal modal logic is axiomatizable by stable canonical rules. We also define stable multi-conclusion consequence relations and stable logics and prove that these systems have the finite model property. We conclude the paper with a number of examples of stable and nonstable systems, and show how to axiomatize them.

1981 ◽  
Vol 46 (2) ◽  
pp. 319-328 ◽  
Author(s):  
Michael C. Nagle

The literature on modal logic includes a number of general completeness and decidability results. The work of Schiller Joe Scroggs [5], R.A. Bull [1], Kit Fine [2], and Krister Segerberg [6] provide examples.Scroggs showed that the proper extensions of S5 have the finite model property and are axiomatizable. (Harrop [3] then argued that logics having these properties are decidable.) Bull extended Scroggs' result by showing that the normal extensions of S4.3 have the finite model property. Fine subsequently provided a model-theoretic proof of Bull's result and also proved the axiomatizability of these logics. In a different direction Segerberg proved that every normal logic containing the characteristic axioms of Lewis' systems S4 and S5 is decidable.The present paper is in this tradition. We extend the results of Scroggs and Segerberg by showing that every normal modal logic containing the S5 axiom has the finite model property, is axiomatizable, and thus is decidable.


2015 ◽  
Vol 80 (2) ◽  
pp. 520-566 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
DAVID GABELAIA ◽  
JOEL LUCERO-BRYAN

AbstractIt is a celebrated result of McKinsey and Tarski [28] that S4 is the logic of the closure algebra Χ+ over any dense-in-itself separable metrizable space. In particular, S4 is the logic of the closure algebra over the reals R, the rationals Q, or the Cantor space C. By [5], each logic above S4 that has the finite model property is the logic of a subalgebra of Q+, as well as the logic of a subalgebra of C+. This is no longer true for R, and the main result of [5] states that each connected logic above S4 with the finite model property is the logic of a subalgebra of the closure algebra R+.In this paper we extend these results to all logics above S4. Namely, for a normal modal logic L, we prove that the following conditions are equivalent: (i) L is above S4, (ii) L is the logic of a subalgebra of Q+, (iii) L is the logic of a subalgebra of C+. We introduce the concept of a well-connected logic above S4 and prove that the following conditions are equivalent: (i) L is a well-connected logic, (ii) L is the logic of a subalgebra of the closure algebra $\xi _2^ + $ over the infinite binary tree, (iii) L is the logic of a subalgebra of the closure algebra ${\bf{L}}_2^ + $ over the infinite binary tree with limits equipped with the Scott topology. Finally, we prove that a logic L above S4 is connected iff L is the logic of a subalgebra of R+, and transfer our results to the setting of intermediate logics.Proving these general completeness results requires new tools. We introduce the countable general frame property (CGFP) and prove that each normal modal logic has the CGFP. We introduce general topological semantics for S4, which generalizes topological semantics the same way general frame semantics generalizes Kripke semantics. We prove that the categories of descriptive frames for S4 and descriptive spaces are isomorphic. It follows that every logic above S4 is complete with respect to the corresponding class of descriptive spaces. We provide several ways of realizing the infinite binary tree with limits, and prove that when equipped with the Scott topology, it is an interior image of both C and R. Finally, we introduce gluing of general spaces and prove that the space obtained by appropriate gluing involving certain quotients of L2 is an interior image of R.


2009 ◽  
Vol 74 (4) ◽  
pp. 1171-1205 ◽  
Author(s):  
Emil Jeřábek

AbstractWe develop canonical rules capable of axiomatizing all systems of multiple-conclusion rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev [37]. We use the framework to give an alternative proof of the known analysis of admissible rules in basic transitive logics, which additionally yields the following dichotomy: any canonical rule is either admissible in the logic, or it is equivalent to an assumption-free rule. Other applications of canonical rules include a generalization of the Blok–Esakia theorem and the theory of modal companions to systems of multiple-conclusion rules or (unitary structural global) consequence relations, and a characterization of splittings in the lattices of consequence relations over monomodal or superintuitionistic logics with the finite model property.


1990 ◽  
Vol 55 (3) ◽  
pp. 1090-1098 ◽  
Author(s):  
Sergei Artemov ◽  
Giorgie Dzhaparidze

AbstractThe paper proves a predicate version of Solovay's well-known theorem on provability interpretations of modal logic:If a closed modal predicate-logical formula R is not valid in some finite Kripke model, then there exists an arithmetical interpretation f such that PA ⊬ fR.This result implies the arithmetical completeness of arithmetically correct modal predicate logics with the finite model property (including the one-variable fragments of QGL and QS). The proof was obtained by adding “the predicate part” as a specific addition to the standard Solovay construction.


1984 ◽  
Vol 49 (2) ◽  
pp. 520-527 ◽  
Author(s):  
M. J. Cresswell

The most common way of proving decidability in propositional modal logic is to shew that the system in question has the finite model property. This is not however the only way. Gabbay in [4] proves the decidability of many modal systems using Rabin's result in [8] on the decidability of the second-order theory of successor functions. In particular [4, pp. 258-265] he is able to prove the decidability of a system which lacks the finite model property. Gabbay's system is however complete, in the sense of being characterized by a class of frames, and the question arises whether there is a decidable modal logic which is not complete. Since no incomplete modal logic has the finite model property [9, p. 33], any proof of decidability must employ some such method as Gabbay's. In this paper I use the Gabbay/Rabin technique to prove the decidability of a finitely axiomatized normal modal propositional logic which is not characterized by any class of frames. I am grateful to the referee for suggesting improvements in substance and presentation.The terminology I am using is standard in modal logic. By a frame is understood a pair 〈W, R〉 in which W is a class (of “possible worlds”) and R ⊆ W2. To avoid confusion in what follows, a frame will henceforth be referred to as a Kripke frame. By contrast, a general frame is a pair 〈, Π〉 in which is a Kripke frame and Π is a collection of subsets of W closed under the Boolean operations and satisfying the condition that if A is in Π then so is R−1 “A. A model on a frame (of either kind) is obtained by adding a function V which assigns sets of worlds to propositional variables. In the case of a general frame we require that V(p) ∈ Π.


10.29007/7gcx ◽  
2018 ◽  
Author(s):  
Andrey Kudinov

We study derivational modal logic of real line with difference modality and prove that it has finite model property but does not have finite axiomatization.


Author(s):  
Mitio Takano

A modified subformula property for the modal logic KD with the additional axiom $\Box\Diamond(A\vee B)\supset\Box\Diamond A\vee\Box\Diamond B$ is shown. A new modification of the notion of subformula is proposed for this purpose. This modification forms a natural extension of our former one on which modified subformula property for the modal logics K5, K5D and S4.2 has been shown (Bull Sect Logic 30:115--122, 2001 and 48:19--28, 2019). The finite model property as well as decidability for the logic follows from this.


1991 ◽  
Vol 15 (1) ◽  
pp. 61-79
Author(s):  
Dimiter Vakarelov

One of the main results of the paper is a characterization of certain kind similarity relations in Pawlak knowledge representation systems by means of first order sentences. As an application we obtain a complete finite axiomatization of the corresponding poly modal logic, called in the paper MLSim. It is proved that MLSim possesses finite model property and is decidable.


2002 ◽  
Vol 67 (1) ◽  
pp. 221-234 ◽  
Author(s):  
R. Hirsch ◽  
I. Hodkinson ◽  
A. Kurucz

AbstractWe prove that everyn-modal logic betweenKnandS5nis undecidable, whenever n ≥ 3. We also show that each of these logics is non-finitely axiomatizable, lacks the product finite model property, and there is no algorithm deciding whether a finite frame validates the logic. These results answer several questions of Gabbay and Shehtman. The proofs combine the modal logic technique of Yankov–Fine frame formulas with algebraic logic results of Halmos, Johnson and Monk, and give a reduction of the (undecidable) representation problem of finite relation algebras.


1974 ◽  
Vol 39 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Kit Fine

There are two main lacunae in recent work on modal logic: a lack of general results and a lack of negative results. This or that logic is shown to have such and such a desirable property, but very little is known about the scope or bounds of the property. Thus there are numerous particular results on completeness, decidability, finite model property, compactness, etc., but very few general or negative results.In these papers I hope to help fill these lacunae. This first part contains a very general completeness result. Let In be the axiom that says there are at most n incomparable points related to a given point. Then the result is that any logic containing K4 and In is complete.The first three sections provide background material for the rest of the papers. The fourth section shows that certain models contain no infinite ascending chains, and the fifth section shows how certain elements can be dropped from the canonical model. The sixth section brings the previous results together to establish completeness, and the seventh and last section establishes compactness, though of a weak kind. All of the results apply to the corresponding intermediate logics.


Sign in / Sign up

Export Citation Format

Share Document