Magneto-thermo-mechanical dynamic buckling analysis of a FG-CNTs-reinforced curved microbeam with different boundary conditions using strain gradient theory

2017 ◽  
Vol 14 (2) ◽  
pp. 243-261 ◽  
Author(s):  
Farshid Allahkarami ◽  
Mansour Nikkhah-bahrami ◽  
Maryam Ghassabzadeh Saryazdi
2020 ◽  
Vol 107 ◽  
pp. 106259
Author(s):  
M.S.H. Al-Furjan ◽  
Ahmad Farrokhian ◽  
Behrooz Keshtegar ◽  
Reza Kolahchi ◽  
Nguyen-Thoi Trung

Author(s):  
Alireza Sheykhi ◽  
Shahrokh Hosseini-Hashemi ◽  
Adel Maghsoudpour ◽  
Shahram E Haghighi

In this study, the nonlinear free vibrations behaviour of nano-truncated conical shells was analysed, using the first-order shear deformable shell model. The analysis took into account the structure size through modified strain gradient theory, and differential quadrature and Fréchet derivative methods in von Kármán-Donnell-type approach to kinematic nonlinearity. The governing equations were obtained, utilizing Hamilton's principle. Partial differential equations plus the non-classical and classical boundary conditions were used to obtain the shells’ equations of motion. Discretizing the boundary conditions and equations of motion were performed based on a generalized differential quadrature analogy. The eigenvalue system was considered based on the harmonic balance technique. The Galerkin and Fréchet derivative approaches were used to determine the nonlinear free vibration behaviour of the carbon nano-cone, which was modelled in the simply- and clamped-supported boundary conditions. Comparisons were made between the findings from the new model versus the couple and classical stress theories, indicating that the classical and modified couple stress theories are distinct representations of modified strain gradient theory. The results also revealed that the degree of hardening of nano-truncated conical shells in the modified strain gradient theory is less than that of modified couple stress and classical theories. This led to a rise in the non-dimensional amplitude and frequency ratios. This study investigated the effect of size on free nonlinear vibrations of nano-truncated conical shells for various apex angles and lengths. Finally, we evaluated and compared our findings versus those reported by previous studies, which confirmed the precision and accuracy of our results.


2020 ◽  
Vol 31 (12) ◽  
pp. 1511-1523
Author(s):  
Mohammad Mahinzare ◽  
Hossein Akhavan ◽  
Majid Ghadiri

In this article, a first-order shear deformable model is expanded based on the nonlocal strain gradient theory to vibration analysis of smart nanostructures under different boundary conditions. The governing equations of motion of rotating magneto-viscoelastic functionally graded cylindrical nanoshell in the magnetic field and corresponding boundary conditions are obtained using Hamilton’s principle. To discretize the equations of motion, the generalized differential quadrature method is applied. The aim of this work is to investigate the effects of the temperature changes, nonlocal parameter, material length scale, viscoelastic coefficient, various boundary conditions, and the rotational speed of this smart structure on natural frequencies of rotating cylindrical nanoshell made of magneto-viscoelastic functionally graded material.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
R. Ansari ◽  
R. Gholami ◽  
S. Ajori

In the current study, the torsional vibration of carbon nanotubes is examined using the strain gradient theory and molecular dynamic simulations. The model developed based on this gradient theory enables us to interpret size effect through introducing material length scale parameters. The model accommodates the modified couple stress and classical models when two or all material length scale parameters are set to zero, respectively. Using Hamilton's principle, the governing equation and higher-order boundary conditions of carbon nanotubes are obtained. The generalized differential quadrature method is utilized to discretize the governing differential equation of the present model along with two boundary conditions. Then, molecular dynamic simulations are performed for a series of carbon nanotubes with different aspect ratios and boundary conditions, the results of which are matched with those of the present strain gradient model to extract the appropriate value of the length scale parameter. It is found that the present model with properly calibrated value of length scale parameter has a good capability to predict the torsional vibration behavior of carbon nanotubes.


2014 ◽  
Vol 23 (5-6) ◽  
pp. 169-176
Author(s):  
Mikhail Guzev ◽  
Chengzhi Qi ◽  
Jiping Bai ◽  
Kairui Li

AbstractEquilibrium equations and boundary conditions of the strain gradient theory in arbitrary curvilinear coordinates have been obtained. Their special form for an axisymmetric plane strain problem is also given.


2014 ◽  
Vol 06 (05) ◽  
pp. 1450060 ◽  
Author(s):  
ALI GHORBANPOUR ARANI ◽  
ABDOLREZA JALILVAND ◽  
REZA KOLAHCHI

Nonlinear vibration and instability of a boron nitride micro-tube (BNMT) conveying ferrofluid under the combined magnetic and electric fields are investigated. Based on Euler–Bernoulli beam (EBB), piezoelasticity strain gradient theory and Hamilton's principle, high order equations of motion are derived for three boundary conditions namely as clamped–clamped (C–C), simply–simply (S–S) and clamped–simply (C–S). The differential quadrature method (DQM) is applied to discretize the motion equations in order to obtain the nonlinear frequency and critical fluid velocity using a direct iterative method. A detailed parametric study is conducted to elucidate the influences of the various boundary conditions, size diameter and magnetic field on vibrational characteristic of BNMT. Numerical results indicate that the effect of magnetic field appears in higher speed of ferrofluid and increases the critical velocity or enlarges the stability region. The results are in good agreement with the previous researches. The results of this study can be used to manufacture smart micro/nano electromechanical systems in advanced biomechanics applications with magnetic and electric fields as parametric controllers.


Sign in / Sign up

Export Citation Format

Share Document