Free vibration of symmetric angle-ply laminated annular circular plate of variable thickness under shear deformation theory

Meccanica ◽  
2015 ◽  
Vol 50 (12) ◽  
pp. 3013-3027 ◽  
Author(s):  
K. K. Viswanathan ◽  
Saira Javed ◽  
Z. A. Aziz ◽  
Kandasamy Prabakar
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Guodong Jin ◽  
Lei Ma ◽  
Hong Zhang ◽  
Qingshan Wang

In this paper, the free vibration behaviors of composite laminated annular and circular plates under complex elastic boundary constraints are investigated. Firstly, Reddy’s high-order shear deformation theory (HSDT) and Jacobi polynomial method are effectively combined to establish the unified vibration analysis model of composite laminated annular and circular plates. Secondly, the simulation of complex elastic boundary and coupling boundary is realized by using artificial virtual spring technology. Then, the energy equation of the composite laminated plate is established by using Rayleigh–Ritz energy technology. Finally, the free vibration solution equation of the laminated plate is obtained through the Hamilton differential principle. The fast and uniform convergence of this method and the accuracy of the calculated results are verified by numerical examples and the model experimental method. On this basis, the parameterization study is conducted, and the effects of material parameters, geometric parameters, spring stiffness values, and lamination scheme on the vibration characteristics of the annular or circular plate are fully discussed, which can provide a theoretical basis for future research.


2020 ◽  
Vol 71 (7) ◽  
pp. 853-867
Author(s):  
Phuc Pham Minh

The paper researches the free vibration of a rectangular plate with one or more cracks. The plate thickness varies along the x-axis with linear rules. Using Shi's third-order shear deformation theory and phase field theory to set up the equilibrium equations, which are solved by finite element methods. The frequency of free vibration plates is calculated and compared with the published articles, the agreement between the results is good. Then, the paper will examine the free vibration frequency of plate depending on the change of the plate thickness ratio, the length of cracks, the number of cracks, the location of cracks and different boundary conditions


Author(s):  
Param D. Gajbhiye ◽  
Vishisht Bhaiya ◽  
Yuwaraj M. Ghugal

In the present study, a 5th order shear deformation theory (5th OSDT) is presented for free vibration analysis of simply supported thick isotropic plates. Governing equations and boundary conditions are evaluated using the concept of virtual work. Numerical results for free vibration analysis include the effects of side to thickness and plate aspect ratios for simply supported thick isotropic plates. Non-dimensional bending mode frequencies, non-dimensional thickness shear mode frequencies and non-dimensional thickness stretch mode frequencies are obtained. Closed form analytical solutions for simply supported isotropic thick plates subjected to single sinusoidal distributed loads are obtained for comparison purpose. The problems considered in this study are solved using MATLAB software. Non-dimensional bending frequencies and non-dimensional thickness shear mode frequencies obtained through the 5th OSDT match well with the exact analytical and exponential shear deformation theory (ESDT) results. Further, the non-dimensional thickness stretch mode frequencies are found to be imaginary.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Fuzhen Pang ◽  
Cong Gao ◽  
Jie Cui ◽  
Yi Ren ◽  
Haichao Li ◽  
...  

This paper describes a unified solution to investigate free vibration solutions of functionally graded (FG) spherical shell with general boundary restraints. The analytical model is established based on the first-order shear deformation theory, and the material varies uniformly along the thickness of FG spherical shell which is divided into several sections along the meridian direction. The displacement functions along circumferential and axial direction are, respectively, composed by Fourier series and Jacobi polynomial regardless of boundary restraints. The boundary restraints of FG spherical shell can be easily simulated according to penalty method of spring stiffness technique, and the vibration solutions are obtained by Rayleigh–Ritz method. To verify the reliability and accuracy of the present solutions, the convergence and numerical verification have been conducted about different boundary parameters, Jacobi parameter, etc. The results obtained by the present method closely agree with those obtained from the published literatures, experiments, and finite element method (FEM). The impacts of geometric dimensions and boundary conditions on the vibration characteristics of FG spherical shell structure are also presented.


Sign in / Sign up

Export Citation Format

Share Document