scholarly journals Two-dimensional nonlinear time fractional reaction–diffusion equation in application to sub-diffusion process of the multicomponent fluid in porous media

Meccanica ◽  
2020 ◽  
Author(s):  
P. Pandey ◽  
S. Das ◽  
E-M. Craciun ◽  
T. Sadowski

AbstractIn the present article, an efficient operational matrix based on the famous Laguerre polynomials is applied for the numerical solution of two-dimensional non-linear time fractional order reaction–diffusion equation. An operational matrix is constructed for fractional order differentiation and this operational matrix converts our proposed model into a system of non-linear algebraic equations through collocation which can be solved by using the Newton Iteration method. Assuming the surface layers are thermodynamically variant under some specified conditions, many insights and properties are deduced e.g., nonlocal diffusion equations and mass conservation of the binary species which are relevant to many engineering and physical problems. The salient features of present manuscript are finding the convergence analysis of the proposed scheme and also the validation and the exhibitions of effectiveness of the method using the order of convergence through the error analysis between the numerical solutions applying the proposed method and the analytical results for two existing problems. The prominent feature of the present article is the graphical presentations of the effect of reaction term on the behavior of solute profile of the considered model for different particular cases.

Author(s):  
Mohammad Ramezani

AbstractThe main propose of this paper is presenting an efficient numerical scheme to solve WSGD scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation. The proposed method is based on fractional B-spline basics in collocation method which involve Caputo-type fractional derivatives for $$0 < \alpha < 1$$ 0 < α < 1 . The most significant privilege of proposed method is efficient and quite accurate and it requires relatively less computational work. The solution of consideration problem is transmute to the solution of the linear system of algebraic equations which can be solved by a suitable numerical method. The finally, several numerical WSGD Scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Sachin Kumar ◽  
Jinde Cao ◽  
Xiaodi Li

In this research work, we focused on finding the numerical solution of time-fractional reaction-diffusion and another class of integro-differential equation known as the integro reaction-diffusion equation. For this, we developed a numerical scheme with the help of quasi-wavelets. The fractional term in the time direction is approximated by using the Crank–Nicolson scheme. The spatial term and the integral term present in integro reaction-diffusion are discretized and approximated with the help of quasi-wavelets. We study this model with Dirichlet boundary conditions. The discretization of these initial and boundary conditions is done with a different approach by the quasi-wavelet-based numerical method. The validity of this proposed method is tested by taking some numerical examples having an exact analytical solution. The accuracy of this method can be seen by error tables which we have drawn between the exact solution and the approximate solution. The effectiveness and validity can be seen by the graphs of the exact and numerical solutions. We conclude that this method has the desired accuracy and has a distinctive local property.


Sign in / Sign up

Export Citation Format

Share Document