Performance enhancement of straight-bladed vertical axis wind turbines via active flow control strategies: a review

Meccanica ◽  
2021 ◽  
Author(s):  
Donghai Zhou ◽  
Daming Zhou ◽  
Yingqiao Xu ◽  
Xiaojing Sun
2016 ◽  
Vol 753 ◽  
pp. 112007
Author(s):  
Michael Argent ◽  
Alasdair McDonald ◽  
Bill Leithead ◽  
Alexander Giles

2020 ◽  
Vol 117 (42) ◽  
pp. 26091-26098
Author(s):  
Dixia Fan ◽  
Liu Yang ◽  
Zhicheng Wang ◽  
Michael S. Triantafyllou ◽  
George Em Karniadakis

We have demonstrated the effectiveness of reinforcement learning (RL) in bluff body flow control problems both in experiments and simulations by automatically discovering active control strategies for drag reduction in turbulent flow. Specifically, we aimed to maximize the power gain efficiency by properly selecting the rotational speed of two small cylinders, located parallel to and downstream of the main cylinder. By properly defining rewards and designing noise reduction techniques, and after an automatic sequence of tens of towing experiments, the RL agent was shown to discover a control strategy that is comparable to the optimal strategy found through lengthy systematically planned control experiments. Subsequently, these results were verified by simulations that enabled us to gain insight into the physical mechanisms of the drag reduction process. While RL has been used effectively previously in idealized computer flow simulation studies, this study demonstrates its effectiveness in experimental fluid mechanics and verifies it by simulations, potentially paving the way for efficient exploration of additional active flow control strategies in other complex fluid mechanics applications.


2020 ◽  
pp. 0309524X2096139
Author(s):  
Fangrui Shi ◽  
Yingqiao Xu ◽  
Xiaojing Sun

In this paper, a three-dimensional numerical simulation of the aerodynamic performance of a horizontal axis wind turbine (HAWT) whose blades are equipped with a new active flow control concept called Co-Flowing Jet (CFJ) is carried out. Numerical results show that the use of CFJ over the blade suction surface can effectively delay flow separation, thus improving the net torque and power output of HAWT. Besides, this increment in the net power produced by the turbine is considerably higher than the power consumed by the CFJ. Thus, the overall efficiency of the HAWT can be greatly increased. Furthermore, influences of different CFJ operating parameters including location of injection port, jet momentum coefficient and slot length on the performance enhancement of a HAWT are also systematically studied and the optimal combination of these parameters to obtain the best possible turbine efficiency throughout a range of different wind speeds has been identified.


Author(s):  
Edward A. Whalen ◽  
Doug S. Lacy ◽  
John C. Lin ◽  
Marlyn Y. Andino ◽  
Anthony E. Washburn ◽  
...  

AIAA Journal ◽  
2020 ◽  
Vol 58 (10) ◽  
pp. 4228-4242
Author(s):  
Michael DeSalvo ◽  
Edward Whalen ◽  
Ari Glezer

Sign in / Sign up

Export Citation Format

Share Document