A method for indirect measurements of the parameters of platinum resistance thermometers at the freezing point of silver

2004 ◽  
Vol 47 (11) ◽  
pp. 1100-1105
Author(s):  
S. V. Marinko

The technique is described of achieving the highest accuracy of measurement with platinum-resistance thermometers at the freezing point of zinc and the boiling point of sulphur. The two points are compared in a series of measurements and it is found that the zinc point is some three or four times more reproducible than the sulphur point. It is concluded that the substitution of the zinc point for the sulphur point as a primary fixed point of the International Temperature Scale would lead to a greater precision in the definition of the scale. The value of the freezing point of zinc is found to be 419∙5055 ± 0∙002°C.


2019 ◽  
Vol 19 (5) ◽  
pp. 209-212
Author(s):  
Peter Pavlasek ◽  
Jan Rybař ◽  
Stanislav Ďuriš ◽  
Jakub Palenčar

Abstract Au/Pt thermocouples are considered as an alternative to High Temperature Platinum Resistance Thermometers and are one of the prime candidates to replace them as the interpolating instrument of the International Temperature Scale of 1990 (ITS-90) in the temperature range between about 660 °C and 962 °C. This work presents the results of investigation of two Au/Pt thermocouples that used exclusively quartz glass (SiO2) as insulation material. Measurements in fixed points of Zn, Al, and Ag were realized on these thermocouples as well with interchanged inner insulation made of high purity aluminium oxide (Al2O3). The conducted experiments tested the performance of Au/Pt thermocouples with the use of different insulation materials. The measured electromotive forces were found to be sensitive to the replacement of the quartz glass by aluminium oxide as an insulation material of the Au/Pt thermocouples. This change of insulation has resulted in a temperature increase up to about 0.5 K measured at the freezing point of silver. The decreasing insulation resistance of quartz glass at higher temperatures is believed to be the source of thermoelectric instability.


1990 ◽  
Vol 33 (6) ◽  
pp. 586-588
Author(s):  
S. L. Knina ◽  
A. A. Nechai ◽  
A. A. Semenov ◽  
V. A. Petrushina ◽  
A. I. Pokhodun

1972 ◽  
Vol 94 (2) ◽  
pp. 381-386 ◽  
Author(s):  
R. P. Benedict ◽  
R. J. Russo

The International Practical Temperature Scale has been redefined recently. It follows that the interpolating equations relating platinum resistance to temperature must be reevaluated for all platinum resistance thermometers which are used as standards for calibration work. After a brief review of the former calibration procedure, the new temperature scale is discussed as it affects resistance thermometry in the temperature range from 0 C to 630.74 C. An example based on new experimental data is given to illustrate the method of determining thermometer constants for the new scale, and to indicate the magnitude of the changes required.


2011 ◽  
Vol 32 (11-12) ◽  
pp. 2397-2408 ◽  
Author(s):  
K. Yamazawa ◽  
K. Anso ◽  
J. V. Widiatmo ◽  
J. Tamba ◽  
M. Arai

Sign in / Sign up

Export Citation Format

Share Document