quartz glass
Recently Published Documents


TOTAL DOCUMENTS

705
(FIVE YEARS 124)

H-INDEX

27
(FIVE YEARS 3)

Author(s):  
T. O. Lipatieva ◽  
A. S. Lipatiev ◽  
Y. V. Kulakova ◽  
S. V. Lotarev ◽  
S. S. Fedotov ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3352
Author(s):  
Yutaka Suwazono ◽  
Takuro Murayoshi ◽  
Hiroki Nagai ◽  
Mitsunobu Sato

A single-walled carbon nanotube/anatase (SWCNT/anatase) composite thin film with a transmittance of over 70% in the visible-light region was fabricated on a quartz glass substrate by heat treating a precursor film at 500 °C in air. The precursor film was formed by spin coating a mixed solution of the titania molecular precursor and well-dispersed SWCNTs (0.075 mass%) in ethanol. The anatase crystals and Ti3+ ions in the composite thin films were determined by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The effect of the heating process on the SWCNTs was analyzed using Raman spectroscopy. The composite film showed an even surface with a scratch resistance of 4H pencil hardness, as observed using field-emission scanning electron microscopy and atomic force microscopy. The electrical resistivity and optical bandgap energy of the composite thin film with a thickness of 100 nm were 6.6 × 10−2 Ω cm and 3.4 eV, respectively, when the SWCNT content in the composite thin film was 2.9 mass%. An anodic photocurrent density of 4.2 μA cm−2 was observed under ultraviolet light irradiation (16 mW cm−2 at 365 nm) onto the composite thin film, thus showing excellent properties as a photoelectrode without conductive substrates.


Author(s):  
Wataru Kosaka ◽  
Shoma Hoshi ◽  
Kanta Kudo ◽  
Kentaro Kaneko ◽  
Tomohiro Yamaguchi ◽  
...  

2021 ◽  
pp. 117081
Author(s):  
Chunhe Miao ◽  
Songlin Xu ◽  
Yiping Song ◽  
Yushan Xie ◽  
Liangzhu Yuan ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1481
Author(s):  
Wenbo Li ◽  
Chenghao Xu ◽  
Ameng Xie ◽  
Ken Chen ◽  
Yingfei Yang ◽  
...  

Interfacial reaction between quartz and potassium silicate glass was studied at both 900 °C and 1000 °C. The results showed that no phase transformation was observed for the pure quartz at 900 °C or 1000 °C. Instead, for quartz particles in K2O-SiO2 glass, the transformation from quartz to cristobalite occurred at the quartz/glass interface at first, and then the cristobalite crystals transformed into tridymite. The tridymite formed at the interface between particles and glass became the site of heterogeneous nucleation, which induces plenty of tridymite precipitation in potassium silicate glass. The influential mechanism of firing temperature and size of quartz particles on transformation rate was discussed.


Author(s):  
Tomohisa Mizuno ◽  
Kohki Murakawa ◽  
Kazuma Yoshimizu ◽  
Takashi Aoki ◽  
Toshiyuki SAMESHIMA

Abstract We experimentally studied the influence of both impurity density and dangling-bond density on PL emissions from group-IV-semiconductor quantum-dots (IV-QDs) of Si and SiC fabricated by hot-ion implantation technique, to improve the PL intensity (IPL) from IV-QDs embedded in two types of insulators of quartz glass (QZ) with low impurity density and thermal-oxide (OX) layers. First, we verified the IPL reduction in the IV-QDs in QZ. However, we demonstrated the IPL enhancement of IV-QDs in doped QZ, which is attributable to multiple-level emission owing to acceptor and donor ion implantations into QZ. Secondly, we confirmed the large IPL enhancement of IV-QDs in QZ and OX, owing to forming gas annealing with H2/N2 mixed gas, which are attributable to the reduction of the dangling-bond density in IV-QDs. Consequently, it is possible to improve the IPL of IV-QDs by increasing impurity density and reducing dangling-bond density.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 80-88
Author(s):  
V. A. Emelyanov ◽  
E. B. Shershnev ◽  
S. I. Sokolov ◽  
A. N. Kupo

The paper presents the results of modeling the processes of controlled thermal cracking of quartz glass under the parallel action of two infrared laser beams of different geometries on the material: with maximum intensity in the center and with zero intensity in the center (annular section). To calculate the temperature distribution in the material, the method of Green's functions was used, which allows us to obtain a well-interpreted solution for almost any type of function of surface heat sources. Further, taking into account the quasi-static approach, using the methods of the classical theory of thermoelasticity, thermoelastic microstresses were calculated, both on the surface and in the depth of the material. It is established that the simultaneous use of these two types of laser exposure makes it possible to control the temperature field more efficiently, and create prerequisites for the most stable formation of a microcrack. The simulation results show that with a bi-beam effect, the micromechanical stresses necessary for the formation of a microcrack are realized in shorter time intervals, both on the surface and in the depth of the material, which allows increasing the processing speed by up to 30 %. Strengthening control over the process of controlled thermal cracking can significantly reduce the percentage of defects and improve the quality of the resulting microeletronics products.


Author(s):  
Yuge Luo ◽  
Hao Tong ◽  
Guodong Liu ◽  
Tianyi Wu ◽  
Yong Li

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Richard M. Essex ◽  
Lav Tandon ◽  
Amy Gaffney ◽  
Cole R. Hexel ◽  
Debbie A. Bostick ◽  
...  

Abstract Two plutonium oxides were prepared as unique reference materials for measurement of actinide elements present as trace constituents. Each reference material unit is approximately 200 mg of PuO2 powder in a quartz glass bottle. Characterized attributes of the oxides included mass fractions of plutonium, americium, neptunium, and uranium. Isotope-amount ratios were also determined for plutonium and uranium, but neptunium and americium were observed to be monoisotopic 237Np and 241Am. Measurements for characterization and verification of the attributes show that plutonium and trace actinides are homogeneous with the exception of limited heterogeneity for uranium, primarily observed for the 238U isotope. Model purification ages calculated from measured americium and uranium attribute values are consistent with material histories and indicate that these impurities are predominantly due to the decay of plutonium isotopes.


Sign in / Sign up

Export Citation Format

Share Document