The Fundamental Physical Constants, the Gravitational Constant, and the See Space Experiment Project

2005 ◽  
Vol 48 (6) ◽  
pp. 521-531 ◽  
Author(s):  
S. A. Kononogov ◽  
V. N. Mel’nikov
2020 ◽  
Vol 7 (12) ◽  
pp. 1803-1817
Author(s):  
Chao Xue ◽  
Jian-Ping Liu ◽  
Qing Li ◽  
Jun-Fei Wu ◽  
Shan-Qing Yang ◽  
...  

Abstract The Newtonian gravitational constant G, which is one of the most important fundamental physical constants in nature, plays a significant role in the fields of theoretical physics, geophysics, astrophysics and astronomy. Although G was the first physical constant to be introduced in the history of science, it is considered to be one of the most difficult to measure accurately so far. Over the past two decades, eleven precision measurements of the gravitational constant have been performed, and the latest recommended value for G published by the Committee on Data for Science and Technology (CODATA) is (6.674 08 ± 0.000 31) × 10−11 m3 kg−1 s−2 with a relative uncertainty of 47 parts per million. This uncertainty is the smallest compared with previous CODATA recommended values of G; however, it remains a relatively large uncertainty among other fundamental physical constants. In this paper we briefly review the history of the G measurement, and introduce eleven values of G adopted in CODATA 2014 after 2000 and our latest two values published in 2018 using two independent methods.


1970 ◽  
Vol 13 (8) ◽  
pp. 1124-1130 ◽  
Author(s):  
S. V. Gorbatsevich ◽  
V. M. Holin ◽  
V. N. Nosal'

2017 ◽  
Vol 9 (5) ◽  
pp. 42
Author(s):  
Ogaba Philip Obande

The fundamental physical constants (FCs) are parametrized. The results reveal that: 1) FCs are field coupling constants. With the exception of ratio of identities such as μ = mp/me, there are no dimensionless constants – all FCs, including Alpha and pi, are dimensional. 2) The constant k = 1.6022 x 10-19 implicates: i) atomic unit of torque, it causes matter’s intrinsic rotation on all (atomic to cosmic) scales; ii) motion of unrestricted bodies through free space and random thermal (Brownian) motion in condensed matter; iii) superluminal space expansion, i.e., Hubble effect is not an acceleration but tangential velocity (pi c) of free space; and iv) common parametric definition of radioactivity and stellar explosion/supernova. 3) Newtonian gravitation comprises two potentials, a spherical pneumatic torque field G1 acts to inflate the gravitational envelope and a combination of force fields G2 impacts an acute hydrostatic pressure on the individual and common envelopes of the gravitating bodies; the two contrary force fields function to create a coherent rigid system in dynamic equilibrium. 4) The bosonic unit mass gravitational acceleration constant, gw = 7.9433 x 1059 m s-2 kg-1 is associated with the strong nuclear force (SNF), it binds matter on all (atomic to cosmic) scales. 5) Although the classical electron radius (CER) formulation re = e2/mec2 yields correct value, it is nonetheless fortuitous as me deviates from the theoretical value by twenty orders of magnitude and theory does not link spatial dimension to electrostatics charge quantum. 6) Successful evaluation of re by three alternative methods implies that an attempt to relegate the CER as currently obtains in the Standard Model seeks to re-engineer reality. 7) Electron bosonic radius identifies with the astronomical unit, it accounts for “spooky” action at a distance and “entanglement” effects. 8) Planck length fails to relate to atomic spatial dimension indicating that Planck space does not refer to the atom. 9) Electric, magnetic and gravitational effects are all motivated by torque but its magnitude differs according to the order: electrical (N m) > magnetic (N m)0.75 > gravitational (N m)0.25. It is submitted that even if the atom degraded with cosmological epoch, values of the FCs would remain fixed because they are parametric relative quantities.


2021 ◽  
Author(s):  
Andrey Chernov

Abstract This study introduces scientific concepts such as gravitational cells and gravitational strings. Gravitational cells and gravitational strings have been organically built into the concept of a gravitational field. This innovation has led to significant scientific results. These results include obtaining the formula for the gravitational constant, the formula for the electron mass, the formula for the mass of the hydrogen atom, the formula for the minimum distance of the action of the gravitational field, etc. All formulas were confirmed by experimental data. In this work, the Planck formula was successfully applied to the gravitational field. A distinctive feature of this study is the fact that most of the new formulas contain only fundamental physical constants (without introducing additional indicators and proportionality coefficients). In this work, the concept of a gravitational quantum is introduced and its value is determined. Also, a new physical constant was obtained - the mass of the gravitational cell of a black hole.


Sign in / Sign up

Export Citation Format

Share Document