scholarly journals An Approach to Solving the One-Dimensional Problem on Compression of a Viscoelastic Layer Dispersedly Reinforced with Elastic Inclusions

2009 ◽  
Vol 45 (4) ◽  
pp. 443-443
Author(s):  
M. B. Akhundov ◽  
A. Sh. Sadayev ◽  
A. A. Ayvazov
Tribology ◽  
2006 ◽  
Author(s):  
Steven R. H. Barrett ◽  
Alexander H. Slocum

The rolling/sliding contact of a hard cylinder on a viscoelastic layer is re-examined. The one-dimensional Maxwell model, with the addition of a parallel spring, is used to model the normal stiffness of the viscoelastic layer A solution for the pressure distribution is presented. It is shown that the maximum tractive force that the cylinder can sustain before complete sliding is a function of the sense and magnitude of the rolling velocity. Two regimes of loading are considered - constant cylinder normal force and constant cylinder indentation.


2015 ◽  
Vol 25 (01) ◽  
pp. 15-36 ◽  
Author(s):  
Bettina Speckmann ◽  
Kevin Verbeek

Necklace maps visualize quantitative data associated with regions by placing scaled symbols, usually disks, without overlap on a closed curve (the necklace) surrounding the map regions. Each region is projected onto an interval on the necklace that contains its symbol. In this paper we address the algorithmic question how to maximize symbol sizes while keeping symbols disjoint and inside their intervals. For that we reduce the problem to a one-dimensional problem which we solve efficiently. Solutions to the one-dimensional problem provide a very good approximation for the original necklace map problem. We consider two variants: Fixed-Order, where an order for the symbols on the necklace is given, and Any-Order where any symbol order is possible. The Fixed-Order problem can be solved in O(n log n) time. We show that the Any-Order problem is NP-hard for certain types of intervals and give an exact algorithm for the decision version. This algorithm is fixed-parameter tractable in the thickness K of the input. Our algorithm runs in O(n log n + n2K4K) time which can be improved to O(n log n + nK2K) time using a heuristic. We implemented our algorithm and evaluated it experimentally.


Author(s):  
Luc Bauwens ◽  
C. Regis L. Bauwens ◽  
Ida Wierzba

A complete multiple-scale solution is constructed for the one-dimensional problem of an oscillating flame in a tube, ignited at a closed end, with the second end open. The flame front moves into the unburnt mixture at a constant burning velocity relative to the mixture ahead, and the heat release is constant. The solution is based upon the assumption that the propagation speed multiplied by the expansion ratio is small compared with the speed of sound. This approximate solution is compared with a numerical solution for the same physical model, assuming a propagation speed of arbitrary magnitude, and the results are close enough to confirm the validity of the approximate solution. Because ignition takes place at the closed end, the effect of thermal expansion is to push the column of fluid in the tube towards the open end. Acoustics set in motion by the impulsive start of the column of fluid play a crucial role in the oscillation. The analytical solution also captures the subsequent interaction between acoustics and the reaction front, the effect of which does not appear to be as significant as that of the impulsive start, however.


1972 ◽  
Vol 7 (1) ◽  
pp. 62-66
Author(s):  
G. A. Osipova ◽  
G. V. Rassokhin ◽  
G. P. Tsybul'skii

1975 ◽  
Vol 53 (2) ◽  
pp. 157-164 ◽  
Author(s):  
F. Ehlotzky

The one-dimensional problem of electron scattering by a standing light wave, known as the Kapitza–Dirac effect, is shown to be easily extendable to two and three dimensions, thus showing all characteristics of diffraction of electrons by simple two- and three-dimensional rectangular lattices.


Sign in / Sign up

Export Citation Format

Share Document