light wave
Recently Published Documents


TOTAL DOCUMENTS

594
(FIVE YEARS 97)

H-INDEX

34
(FIVE YEARS 5)

Author(s):  
Mansi Kadam

Abstract: In today’s era of illuminating devices, there are a wide variety of devices available in aesthetics but the none with variable intensity of light. Using the basic principle of polarization of light using a Polaroid filter or polarizer, the designing of a light intensity control was done. The polarizing angle of the filter decides the intensity of the light that would pass through the filters. According to the principle of propagation of light, the electric and magnetic vibrations of a light wave occur perpendicularly to each other. A light wave that is vibrating in more than one plane is known as unpolarized light. The light emitted by the sun, by a lamp or a tube light are all unpolarized light sources. The other kind of wave is a polarized wave. A Plane polarized light vibrates on only one plane. The process of transforming unpolarized light into the polarized light is known as polarization. Using the same principle and with the use of a LDR (light dependent resister) as a sensor to sense the intensity of the surrounding light and then rotate the polaroid filter sheets accordingly using a stepper motor for the required change in intensity. The sensing and sending of feedback and subsequent rotation of the Polaroid filter sheets would be automated by ATMEGA32 microcontroller and L293D. Keywords: Polaroids, LDR, Light Variation, ATMEGA32, L293D


2022 ◽  
Author(s):  
Zehra (Bozkurt) Özdemir

Abstract In this paper, it is shown that the motion of a polarized light wave in an optical fiber has a special meaning that relates the scalar and vector part of the dual quaternion to the kinematics concept of a screw. We describe the circular and elliptical polarization of a light wave according to how the electric field vector varies in a projection onto a plane perpendicular to the propagation direction using the Clifford algebra of the dual quaternion. Also, we determine the circular-Rytov curve (CR ) and elliptical-Rytov curve (ER ), which described the paths traced out by the tip of the electric field vector as it propagates in space, related to the polarization state of the electric field ε. The elliptical and circular polarization states are expressed by using the four Stokes parameters and their matrix form. Furthermore, some motivating examples are given and visualized their images with the help of the MAPLE program.


2022 ◽  
Vol 92 (3) ◽  
pp. 453
Author(s):  
А.Ф. Кабыченков ◽  
Ф.В. Лисовский

It is shown that an inhomogeneous circularly polarized light wave induces components of the antiferromagnetism vector in centroantisymmetric antiferromagnets; a narrow beam of light can create a skyrmion. The analysis of the possibility of practical use of the predicted effects is carried out.


Author(s):  
T.A. Tolkynbayev ◽  
◽  
A.D. Mekhtiev ◽  
A.K. Kozhas ◽  
Sh.B. Toleubayeva ◽  
...  

A method for monitoring the stress-strain state of building structures has been developed. A technical inspection of monolithic slab structures using electronic beacons for crack control was carried out. The basis of the monitoring system of monolithic reinforced concrete structures is a fiber-optic technology based on the control of changes in the parameters of the light wave. For the experimental part, a scheme for testing fiber-optic sensors has been developed.


Author(s):  
D. Khaustov ◽  
Ya. Khaustov ◽  
Ye. Ryzhov ◽  
O. Burashnikov ◽  
E. Lychkovskyy ◽  
...  

The employment of new mathematical and computer approaches for the fusion of target images from the visible and infrared channels of the sightseeing system (SSS) is one of the ways to increase the efficiency of the SSS of armored vehicles. Modern approaches to improving the efficiency of image fusion are aimed to increase the visibility of the target via improving the quality indices of fused images. This paper proposes a fundamentally new approach to image fusion, namely dynamic image fusion, at which the target is observed in the mode of a video clip composed of a sequence of stationary fused images obtained at different parameters of fusion, in contrast to traditional stationary image fusion, at which the decision is made from one fused image. Unlike stationary image fusion, aimed to increase the visibility of the target, the dynamic image fusion allows one to enhance the conspicuity of the target. The principle of dynamic image fusion proposed in this paper is based on matrix formalism, in which the fused image is constructed in the form of a complex vector function, which by its mathematical form is analogous to the Jones vector of elliptically polarized light wave, which in turn opens the possibility of matrix transformation of the complex vector of the fused image and consequently its parameterization by analogy with the Jones matrix formalism for the light wave. The article presents mathematical principles of matrix formalism, which is the basis for dynamic image fusion, gives examples of stationary and dynamic image fusion by the method of complex vector function and compares with the corresponding images, fused by algorithms of weight addition in the field of real and complex scalars. It is shown that by selecting weight coefficients, the general form of a complex amplitude vector image can be reduced to the algorithms of weight and averaged addition in the field of real scalars, weight amplitude and RMS-image in the field of complex scalar numbers, and geometric-mean image in the field of complex vectors, which, thereby, are partial cases of the general form of the complex amplitude image in the field of complex vectors. The animated images obtained by the method of complex vector function illustrate the increase of conspicuity of the object of observation due to the dynamic change of the fusion parameters.


2021 ◽  
Author(s):  
Xiao Li ◽  
Liang-Liang Wang ◽  
Jia-shun Zhang ◽  
Wei Chen ◽  
Yue Wang ◽  
...  

Abstract A quantum key distribution transmitter chip based on hybrid‐integration of silica planar light‐wave circuit (PLC) and lithium niobates (LN) modulator PLC is presented. The silica part consists of a tunable directional coupler and 400 ps delay line, and the LN part is made up of a Y‐branch, with electro‐optic modulators on both arms. The two parts are facet‐coupled to form an asymmetric Mach‐Zehnder interferometer. We have successfully encoded and decoded four BB84 states at 156.25 MHz repetition rate. Fast phase‐encoding of 0 or π has been achieved, with interference fringe visibilities 78.53% and 82.68% for state |+> and |‐>, respectively. With the aid of an extra off‐chip LN intensity modulator, two time‐bin states have been prepared and the extinction ratios are 18.65 dB and 15.46 dB for state |0> and |1>, respectively.


2021 ◽  
Vol 56 ◽  
pp. 5-26
Author(s):  
A. V. Samoylov ◽  

Trends in the development of modern sensory devices based on surface plasmon resonance (SPR) are considered. The basic principles of construction of SPR sensor are given. For excitation of surface plasmons on the surface of sensitive elements of biosensory, a prism of total internal reflection is used or a dielectric substrate are used. A thin (dozens nm) film of high-conductive metal (mainly gold or silver) is applied to the working surface of the prisms or dielectric substrate. In a typical observation experiment, SPR is measured dependence on the angle of increasing light intensity, reflected by the resonance sensitive surface of the prism (chip). The optical schemes and principles of work of various SPR sensors are considered: - SPR Sensors with angular modulation, which are the most commonly used method based on the corner registration, in which the SPR occurs. The surface of the metal film is irradiated by monochromatic light and scans on a certain range of angles. There is a kind of SPR sensors with angular modulation, in which there is no mechanical scan of the angle of fall. Such sensors are entirely necessary for excitation of PPRs a set of angles is obtained due to a divergent or convergent light beam. - PPR sensors with a wavelength modulation is based on fixing an angle of falling light at a certain value and modulation of the wavelength of the incident light. Excitation of surface plasmons leads to a characteristic failure in the spectrum of reflected radiation. - Phase sensitive SPR sensors in which a change in the phase of the light wave associated with the surface plasma is measured on one corner of the fall and the wavelength of the light wave and is used as the output signal. - SPR imaging sensors in which the Technology of SPR imaging (SPRi) combines the sensitivity of the SPR with spatial image capabilities. The SPRI circuit uses as a fixed angle (as a rule, a slightly left angle of the SPR) and a fixed wavelength to measure changes in the reflection ability (Δ% R) that occur when the curve of the SPR is shifted due to the change in the refractive index above the surface of the sensor element. - SPR imaging sensors polarization contrast. In order to improve the quality of high-performance SPR imaging sensors in terms of sensitivity and resolution, the method of polarization contrast is used Disadvantages and advantages of SPR sensors are constructed with different principles are considered. The design and prospect of the use of achromatic and suburchast wave plates in the PPR imaging sensors with polarization contrast are considered.


2021 ◽  
Author(s):  
xuyue guo ◽  
JINZHAN ZHONG ◽  
Peng Li ◽  
Dandan Wen ◽  
Sheng Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeong Ryeol Choi

AbstractThe characteristics of nonstatic quantum light waves in the coherent state in a static environment is investigated. It is shown that the shape of the wave varies periodically as a manifestation of its peculiar properties of nonstaticity like the case of the Fock-state analysis for a nonstatic wave. A belly occurs in the graphic of wave evolution whenever the wave is maximally displaced in the quadrature space, whereas a node takes place every time the wave passes the equilibrium point during its oscillation. In this way, a belly and a node appear in turn successively. Whereas this change of wave profile is accompanied by the periodic variation of electric and magnetic energies, the total energy is conserved. The fluctuations of quadratures also vary in a regular manner according to the wave transformation in time. While the resultant time-varying uncertainty product is always larger than (or, at least, equal to) its quantum-mechanically allowed minimal value ($$\hbar /2$$ ħ / 2 ), it is smallest whenever the wave constitutes a belly or a node. The mechanism underlying the abnormal features of nonstatic light waves demonstrated here can be interpreted by the rotation of the squeezed-shape contour of the Wigner distribution function in phase space.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zbigniew Mikołajczyk ◽  
Iwona Nowak ◽  
Andrzej Kawiński ◽  
Michał Mik

Abstract The first part of the publication presents a substantively insightful literature study on the essence and effects of light waves on wound healing in living organisms, including the use of phototherapy in the treatment of the diabetic foot. A knitted textile dressing was designed and manufactured for phototherapy of patients with diabetes suffering from diabetic foot syndrome (DFS). The proposed solution is intended for the treatment of dermal tissues within the patient's foot affected because of diabetic disease at an early stage. Thus, the use of a knitted dressing with incorporated fiber optic structures and powered by a semiconductor laser emitting a 405 nm light wave from its entire surface would prevent further anomalies of the patient's tissues and help to avoid surgical intervention.


Sign in / Sign up

Export Citation Format

Share Document