Molecular cytogenetic identification of a wheat–Psathyrostachys huashanica Keng 5Ns disomic addition line with stripe rust resistance

2013 ◽  
Vol 31 (4) ◽  
pp. 879-888 ◽  
Author(s):  
Wanli Du ◽  
Jing Wang ◽  
Min Lu ◽  
Shugui Sun ◽  
Xinhong Chen ◽  
...  
Genome ◽  
2017 ◽  
Vol 60 (5) ◽  
pp. 375-383 ◽  
Author(s):  
Aicen Zhang ◽  
Wanyue Li ◽  
Changyou Wang ◽  
Xiaofei Yang ◽  
Chunhuan Chen ◽  
...  

Leymus mollis (Trin.) Pilg. (2n = 4x = 28, NsNsXmXm) possesses a number of valuable genes against biotic and abiotic stress, which could be transferred into common wheat background for wheat improvement. In the present study, we determined the karyotypic constitution of a wheat – L. mollis double disomic addition line, M11003-4-4-1-1, selected from the F5 progeny of a stable wheat – L. mollis derivative M39 (2n = 56) × Triticum aestivum cultivar 7182, by morphological and cytogenetic identification, GISH (genomic in situ hybridization), FISH (fluorescent in situ hybridization), molecular markers analysis, and stripe rust resistance evaluation. Cytological studies demonstrated that M11003-4-4-1-1 had a chromosome karyotype of 2n = 46 with 23 bivalents, while GISH and FISH analysis indicated that this line contained 42 common wheat chromosomes and two pairs of L. mollis chromosomes. DNA markers showed that the alien chromosomes from L. mollis belonged to homoeologous groups 5 and 6. Evaluation of the agronomic traits revealed that M11003-4-4-1-1 was resistant to stripe rust at the adult stage, while the plant height was reduced and the 1000-grain weight was increased significantly. Therefore, the new line M11003-4-4-1-1 could be exploited as an important bridge material in chromosome engineering and wheat breeding.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1482-1487 ◽  
Author(s):  
Qiang Li ◽  
Jing Huang ◽  
Lu Hou ◽  
Pei Liu ◽  
Jinxue Jing ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. The best strategy to control stripe rust is to grow resistant cultivars, but only a few effective genes are available. The wheat accession H9020-1-6-8-3 is a translocation line previously developed from interspecific hybridization between wheat genotype 7182 and Psathyrostachys huashanica, and is resistant to most Chinese Puccinia striiformis f. sp. tritici races. To identify the resistance genes in the translocation line, H9020-1-6-8-3 was crossed with susceptible genotype Mingxian 169, and seedlings of parents and F1, F2, and F3 progenies were tested with prevalent Chinese P. striiformis f. sp. tritici races CYR32 and CYR33 under controlled greenhouse conditions. The genetic results indicated that two single dominant genes in H9020-1-6-8-3 confer resistance to CYR32 and CYR33, respectively. The gene for resistance to CYR33 was temporarily designated as YrH9020. Six simple-sequence repeat markers were used to map the resistance gene to the short arm of wheat chromosome 2D, using 329 F2 plants tested with CYR33 in the greenhouse. The genetic distances of the two closest flanking markers, Xgwm261 and Xgwm455, were 4.4 and 5.8 centimorgans, respectively. Disease assessments and polymorphic tests of the flanking markers among the Psathyrostachys huashanica line and wheat lines 7182, H9020-1-6-8-3, and Mingxian169 suggested that the resistance gene YrH9020 in H9020-1-6-8-3 was originally from P. huashanica. The exotic stripe rust resistance gene and linked molecular markers should be useful for pyramiding with other genes to develop wheat cultivars with high-level and durable resistance to stripe rust.


Genome ◽  
2014 ◽  
Vol 57 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Wanli Du ◽  
Jing Wang ◽  
Yuhui Pang ◽  
Liangming Wang ◽  
Jun Wu ◽  
...  

We isolated a wheat germplasm line, 22-2, which was derived from common wheat (Triticum aestivum ‘7182’) and Psathyrostachys huashanica ‘Keng’ (2n = 2x = 14, NsNs). Genomic composition and homoeologous relationships of 22-2 was analyzed using cytology, genomic in situ hybridization (GISH), EST–SSR, and EST–STS to characterize the alien chromatin in the transfer line. The cytological investigations showed that the chromosome number and configuration were 2n = 44 = 22 II. Mitotic and meiotic GISH using P. huashanica genomic DNA as the probe indicated that 22-2 contained a pair of P. huashanica chromosomes. The genomic affinities of the introduced P. huashanica chromosomes were determined by EST–SSR and EST–STS using multiple-loci markers from seven wheat homoeologous groups between the parents and addition line. One EST–SSR and 17 EST–STS markers, which were located on the homoeologous group 3 chromosomes of wheat, amplified polymorphic bands in 22-2 that were unique to P. huashanica. Thus, these markers suggested that the introduced Ns chromosome pair belonged to homoeologous group 3, so we designated 22-2 as a 3Ns disomic addition line. Based on disease reaction to mixed races (CYR31, CYR32, and Shuiyuan14) of stripe rust in the adult stages, 22-2 was found to have high resistance to stripe rust, which was possibly derived from its P. huashanica parent. Consequently, the new disomic addition line 22-2 could be a valuable donor source for wheat improvement depending on the excellent agronomic traits, especially, the introduction of novel disease resistance genes into wheat during breeding programs.


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1029-1036 ◽  
Author(s):  
Xiaofei Yang ◽  
Xin Li ◽  
Changyou Wang ◽  
Chunhuan Chen ◽  
Zengrong Tian ◽  
...  

A common wheat – Leymus mollis (2n = 4x = 28, NsNsXmXm) double monosomic addition line, M11003-4-3-8/13/15 (2n = 44 = 42T.a + L.m2 + L.m3), with stripe rust resistance was developed (where T.a represents Triticum aestivum chromosome, L.m represents L. mollis chromosome, and L.m2/3 represents L. mollis chromosome of homoeologous groups 2 and 3). The progenies of line M11003-4-3-8/13/15 were characterized by cytological observation, specific molecular markers, fluorescence in situ hybridization (FISH), and genomic in situ hybridization (GISH). Among the progenies, there existed five different types (I, II, III, IV, and V) of chromosome constitution, the formulas of which were 2n = 44 = 42T.a + 1L.m2 + 1L.m3, 2n = 43 = 42T.a + 1L.m2, 2n = 43 = 42T.a + 1L.m3, 2n = 42 = 42T.a, and 2n = 44 = 42T.a + 2L.m2, respectively. Field disease screening showed that types I and III showed high resistance to stripe rust, while types II, IV, and V were susceptible. Leymus mollis was almost immune to stripe rust, whereas the wheat parent, cultivar 7182, was susceptible. Therefore, we concluded that the stripe rust resistance originated from L. mollis. These various lines could be further fully exploited as important disease resistance materials to enrich wheat genetic resources.


Sign in / Sign up

Export Citation Format

Share Document