monosomic addition
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 9)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Jinna Li ◽  
Kun Wang ◽  
Meichao Ji ◽  
Tingyue Zhang ◽  
Chao Yang ◽  
...  

Abstract Background Salt stress is a major abiotic stress that limits plant growth, development and productivity. Studying the molecular mechanisms of salt stress tolerance may help to enhance crop productivity. Sugar beet monosomic addition line M14 exhibits tolerance to salt stress. Results In this work, the changes in the BvM14 proteome and redox proteome induced by salt stress were analyzed using a multiplex iodoTMTRAQ double labeling quantitative proteomics approach. A total of 80 proteins were differentially expressed under salt stress. Interestingly, A total of 48 redoxed peptides were identified for 42 potential redox-regulated proteins showed differential redox change under salt stress. A large proportion of the redox proteins were involved in photosynthesis, ROS homeostasis and other pathways. For example, ribulose bisphosphate carboxylase/oxygenase activase changed in its redox state after salt treatments. In addition, three redox proteins involved in regulation of ROS homeostasis were also changed in redox states. Transcription levels of eighteen differential proteins and redox proteins were profiled. (The proteomics data generated in this study have been submitted to the ProteomeXchange and can be accessed via username: [email protected], password: q9YNM1Pe and proteomeXchange# PXD027550.) Conclusions The results showed involvement of protein redox modifications in BvM14 salt stress response and revealed the short-term salt responsive mechanisms. The knowledge may inform marker-based breeding effort of sugar beet and other crops for stress resilience and high yield.


2021 ◽  
Author(s):  
Jinna Li ◽  
Meichao Ji ◽  
Tingyue Zhang ◽  
Chao Yang ◽  
He Liu ◽  
...  

Abstract Background: Salt stress is a major abiotic stress that limits plant growth, development and productivity. Studying the molecular mechanisms of salt stress tolerance may help to enhance crop productivity. Sugar beet monosomic addition line M14 exhibits tolerance to salt stress. Results: In this work, the changes in the BvM14 proteome and redox proteome induced by salt stress were analyzed using a multiplex iodoTMTRAQ double labeling quantitative proteomics approach. A total of 80 proteins were differentially expressed under salt stress. Interestingly, 42 potential redox-regulated proteins showed differential redox change under salt stress. A large proportion of the redox proteins were involved in photosynthesis, ROS homeostasis and other pathways. For example, ribulose bisphosphate carboxylase/oxygenase activase changed in its redox state after salt treatments. In addition, three redox proteins involved in regulation of ROS homeostasis were also changed in redox states. Transcription levels of eighteen differential proteins and redox proteins were profiled. Conclusions: The results showed involvement of protein redox modifications in BvM14 salt stress response and revealed the short-term salt responsive mechanisms. The knowledge may inform marker-based breeding effort of sugar beet and other crops for stress resilience and high yield.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 147
Author(s):  
María Carmen Calderón ◽  
Pilar Prieto

Bread wheat is an allohexaploid that behaves as a diploid during meiosis, the cell division process to produce the gametes occurring in organisms with sexual reproduction. Knowledge of the mechanisms implicated in meiosis can contribute to facilitating the transfer of desirable traits from related species into a crop like wheat in the framework of breeding. It is particularly interesting to shed light on the mechanisms controlling correct pairing between homologous (equivalent) chromosomes and recombination, even more in polyploid species. The Ph1 (Pairing homoeologous 1) locus is implicated in recombination. In this work, we aimed to study whether homoeologous (equivalent chromosomes from different genomes) Hordeum chilense (wild barley) and H. vulgare (cultivated barley) chromosomes can associate and recombine during meiosis in the wheat background in the absence of the Ph1 locus. For this, we have developed H. chilense and H. vulgare double monosomic addition lines for the same and for different homoeology group in wheat in the ph1b mutant background. Using genomic in situ hybridization, we visualized the two (wild and cultivated) barley chromosomes during meiosis and we studied the processes of recognition, association, and recombination between homoeologous chromosomes in the absence of the Ph1 locus. Our results showed that the Ph1 locus does not prevent homoeologous chromosome pairing but it can regulate recombination.


2020 ◽  
Vol 15 (1) ◽  
pp. 62-85
Author(s):  
Olga Vladimirovna Razumova ◽  
Mikhail Sergeevich Bazhenov ◽  
Ekaterina Aleksandrovna Nikitina ◽  
Lyubov Andreevna Nazarova ◽  
Dmitry Viktorovich Romanov ◽  
...  

Dasypyrum villosum is an annual cereal used as a donor of agronomic traits for wheat. Productivity is one of the most important traits that breeding is aimed at. It is a very complex trait, the formation of which is influenced by many different factors, both internal (the genotype of the plant) and external. The genes responsible for the gibberellin sensitivity played a large role in multiplying yields of cereal crops. Another such gene is the Gid1, which encodes a receptor for gibberellins. This article compares the DNA sequences of the Gid1 gene obtained from six Dasypyrum villosum samples. Using a sequence of wheat and rye taken from the GenBank database (NCBI), we selected primers for regions of different genomes (A, B, and D subgenomes of wheat and the R genome of rye), and carried out a polymerase chain reaction on D. villosum accessions of diverse geographical origin. The resulting PCR product was sequenced by an NGS method. Based on the assembled sequences, DNA markers have been created that make it possible to differentiate these genes of the V genome and homologous genes of wheat origin. Using monosomic addition, substitution, and translocation wheat lines, the localization of the Gid1 gene of D. villosum was established on the long arm of the first V chromosome. A phenotypic assessment of common wheat lines carrying substituted, translocated, or added D. villosum chromosomes in their karyotype was performed. Tendency of disappearance of the first chromosome of D. villosum in the lines with added chromosomes was revealed.


2020 ◽  
Vol 11 ◽  
Author(s):  
Michał T. Kwiatek ◽  
Waldemar Ulaszewski ◽  
Jolanta Belter ◽  
Dylan Phillips ◽  
Roksana Skowrońska ◽  
...  

Alien chromosome introgression has become a valuable tool to broaden the genetic variability of crop plants via chromosome engineering. This study details the procedure to obtain monosomic addition and monosomic substitution lines of the triticale carrying 2Sk chromosome from Aegilops kotchyi Boiss., which harbors Lr54 + Yr37 leaf and stripe rust-resistant gene loci, respectively. Initially, A. kotschyi × Secale cereale artificial amphiploids (2n = 6x = 42 chromosomes, UUSSRR) were crossed with triticale cv. “Sekundo” (2n = 6x = 42, AABBRR) in order to obtain fertile offspring. Cyto-molecular analyses of five subsequent backcrossing generations revealed that 2Sk chromosome was preferentially transmitted. This allowed for the selection of monosomic 2Sk addition (MA2Sk) lines of triticale. Finally, the 2Sk(2R) substitution plants were obtained by crossing MA2Sk with the nullisomic (N2R) plants of triticale. The presence of 2Sk chromosome in subsequent generations of plants was evaluated using SSR markers linked to Lr54 + Yr37 loci. Disease evaluation of the monosomic 2Sk(2R) substitution plants for the reaction to leaf and stripe rust infection were carried out under controlled conditions in a growth chamber. The results showed significant improvement of leaf rust resistance severity of monosomic substitution plants compared with control (“Sekundo”). In contrast, the introgression of the Lr54 + Yr37 loci did not lead to improvement of stripe rust resistance. In summary, the creation of monosomic addition and monosomic substitution lines of triticale is the starting point for the precise and guided transfer of Lr54 + Yr37 loci. The results showed that the developed materials could be exploited for the development of triticale varieties with resistance to leaf rust.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 186
Author(s):  
Mikhail Bazhenov ◽  
Anastasiya Chernook ◽  
Pavel Kroupin ◽  
Gennady Karlov ◽  
Mikhail Divashuk

The Dwarf53 (D53) gene, first studied in rice, encodes a protein that acts as a repressor of the physiological response of plants to strigolactones—substances that regulate the activity of axillary buds, stem growth, branching of roots and other physiological processes. In this work, we isolated and sequenced the homolog of the D53 gene in several accessions of the wild grass Dasypyrum villosum of different geographical origins, resulting in the discovery of large allelic variety. A molecular marker was also created that allows us to differentiate the D. villosum D53 gene from common wheat genes. Using this marker and monosomic addition, substitution and translocation wheat lines carrying the known D. villosum chromosomes, the D53 gene was localized on the long arm of the 5V chromosome.


2020 ◽  
Vol 70 (3) ◽  
pp. 355-362
Author(s):  
Yoshiaki Fujita ◽  
Yuriko Nagashima ◽  
Mei Yamaguchi ◽  
Su-Hyeun Shim ◽  
Takayuki Ohnishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document