Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding

2020 ◽  
Vol 47 (4) ◽  
pp. 3155-3167 ◽  
Author(s):  
Venkatesh ◽  
B. Nandini
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Juan Manuel Crescente ◽  
Diego Zavallo ◽  
Marcelo Helguera ◽  
Leonardo Sebastián Vanzetti

2012 ◽  
Vol 124 (7) ◽  
pp. 1365-1373 ◽  
Author(s):  
Beery Yaakov ◽  
Elif Ceylan ◽  
Katherine Domb ◽  
Khalil Kashkush

2018 ◽  
Vol 115 (28) ◽  
pp. E6650-E6658 ◽  
Author(s):  
Alexander M. Boutanaev ◽  
Anne E. Osbourn

Plants produce a plethora of natural products, including many drugs. It has recently emerged that the genes encoding different natural product pathways may be organized as biosynthetic gene clusters in plant genomes, with >30 examples reported so far. Despite superficial similarities with microbes, these clusters have not arisen by horizontal gene transfer, but rather by gene duplication, neofunctionalization, and relocation via unknown mechanisms. Previously we reported that two Arabidopsis thaliana biosynthetic gene clusters are located in regions of the genome that are significantly enriched in transposable elements (TEs). Other plant biosynthetic gene clusters also harbor abundant TEs. TEs can mediate genomic rearrangement by providing homologous sequences that enable illegitimate recombination and gene relocation. Thus, TE-mediated recombination may contribute to plant biosynthetic gene cluster formation. TEs may also facilitate establishment of regulons. However, a systematic analysis of the TEs associated with plant biosynthetic gene clusters has not been carried out. Here we investigate the TEs associated with clustered terpene biosynthetic genes in multiple plant genomes and find evidence to suggest a role for miniature inverted-repeat transposable elements in cluster formation in eudicots. Through investigation of the newly sequenced Amborella trichopoda, Aquilegia coerulea, and Kalanchoe fedtschenkoi genomes, we further show that the “block” mechanism of founding of biosynthetic gene clusters through duplication and diversification of pairs of terpene synthase and cytochrome P450 genes that is prevalent in the eudicots arose around 90–130 million years ago, after the appearance of the basal eudicots and before the emergence of the superrosid clade.


Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 435-443
Author(s):  
Mingsheng Chen ◽  
Phillip SanMiguel ◽  
Jeffrey L Bennetzen

Abstract Previously, we have demonstrated microcolinearity of gene composition and orientation in sh2/a1-homologous regions of the rice, sorghum, and maize genomes. However, the sh2 and a1 homologues are only about 20 kb apart in both rice and sorghum, while they are separated by about 140 kb in maize. In order to further define sequence organization and conservation in sh2/a1-homologous regions, we have completely sequenced a 42,446-bp segment of sorghum DNA. Four genes were identified: a homologue of sh2, two homologues of a1, and a putative transcriptional regulatory gene. A solo long terminal repeat of the retroelement Leviathan was detected between the two a1 homologues, and eight miniature inverted repeat transposable elements were found in this region. Comparison of the sorghum sequence with the sequence of the homologous segment from rice indicated that only the identified genes were evolutionarily conserved between these two species, which have evolved independently for over 50 million years. The introns of the a1 homologues have evolved faster than the introns of the sh2 homologue. The a1 tandem duplication appears to be an ancient event that may have preceded the ancestral divergence of maize, sorghum, and rice.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1425-1438 ◽  
Author(s):  
P J Merriman ◽  
C D Grimes ◽  
J Ambroziak ◽  
D A Hackett ◽  
P Skinner ◽  
...  

Abstract The S elements form a diverse family of long-inverted-repeat transposons within the genome of Drosophila melanogaster. These elements vary in size and sequence, the longest consisting of 1736 bp with 234-bp inverted terminal repeats. The longest open reading frame in an intact S element could encode a 345-amino acid polypeptide. This polypeptide is homologous to the transposases of the mariner-Tc1 superfamily of transposable elements. S elements are ubiquitous in D. melanogaster populations and also appear to be present in the genomes of two sibling species; however, they seem to be absent from 17 other Drosophila species that were examined. Within D. melanogaster strains, there are, on average, 37.4 cytologically detectable S elements per diploid genome. These elements are scattered throughout the chromosomes, but several sites in both the euchromatin and beta heterochromatin are consistently occupied. The discovery of an S-element-insertion mutation and a reversion of this mutation indicates that S elements are at least occasionally mobile in the D. melanogaster genome. These elements seem to insert at an AT dinucleotide within a short palindrome and apparently duplicate that dinucleotide upon insertion.


2020 ◽  
Vol 13 (6) ◽  
pp. 851-863 ◽  
Author(s):  
Le Xu ◽  
Kun Yuan ◽  
Meng Yuan ◽  
Xiangbing Meng ◽  
Min Chen ◽  
...  

Gene ◽  
2009 ◽  
Vol 448 (2) ◽  
pp. 214-220 ◽  
Author(s):  
Dariusz Grzebelus ◽  
Mirosława Gładysz ◽  
Alicja Macko-Podgórni ◽  
Tomasz Gambin ◽  
Barbara Golis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document