Sequence Organization and Conservation in sh2/a1-Homologous Regions of Sorghum and Rice

Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 435-443
Author(s):  
Mingsheng Chen ◽  
Phillip SanMiguel ◽  
Jeffrey L Bennetzen

Abstract Previously, we have demonstrated microcolinearity of gene composition and orientation in sh2/a1-homologous regions of the rice, sorghum, and maize genomes. However, the sh2 and a1 homologues are only about 20 kb apart in both rice and sorghum, while they are separated by about 140 kb in maize. In order to further define sequence organization and conservation in sh2/a1-homologous regions, we have completely sequenced a 42,446-bp segment of sorghum DNA. Four genes were identified: a homologue of sh2, two homologues of a1, and a putative transcriptional regulatory gene. A solo long terminal repeat of the retroelement Leviathan was detected between the two a1 homologues, and eight miniature inverted repeat transposable elements were found in this region. Comparison of the sorghum sequence with the sequence of the homologous segment from rice indicated that only the identified genes were evolutionarily conserved between these two species, which have evolved independently for over 50 million years. The introns of the a1 homologues have evolved faster than the introns of the sh2 homologue. The a1 tandem duplication appears to be an ancient event that may have preceded the ancestral divergence of maize, sorghum, and rice.

1983 ◽  
Vol 3 (10) ◽  
pp. 1834-1845
Author(s):  
G M Gilmartin ◽  
J T Parsons

Transcriptional regulatory elements within the Rous sarcoma virus long terminal repeat were examined by the construction of a series of deletions and small insertions within the U3 region of the long terminal repeat. The analysis of these mutations in chicken embryo cells and COS cells permitted the identification of important transcriptional regulatory elements. Sequences within the region 31 to 18 base pairs upstream of the RNA cap site (-31 to -18), encompassing a TATA box-like sequence, function in the selection of the correct site of transcription initiation and, in addition, augment the efficiency of transcription. These sequences are essential for virus replication. Sequences within the region -79 to -59, overlapping a CAAT box-like sequence, are not required for virus replication and have no obvious effect on viral RNA transcription in the presence of an intact TATA box. However, in mutants lacking a functional TATA sequence, mutations in this region serve to decrease the efficiency of correct transcriptional initiation events.


2005 ◽  
Vol 25 (7) ◽  
pp. 2861-2870 ◽  
Author(s):  
Corinne Augé-Gouillou ◽  
Benjamin Brillet ◽  
Marie-Hélène Hamelin ◽  
Yves Bigot

ABSTRACT The mobility of transposable elements via a cut-and-paste mechanism depends on the elaboration of a nucleoprotein complex known as the synaptic complex. We show here that the Mos1 synaptic complex consists of the two inverted terminal repeats of the element brought together by a transposase tetramer and is designated paired-end complex 2 (PEC2). The assembly of PEC2 requires the formation of a simpler complex, containing one terminal repeat and two transposase molecules and designated single-end complex 2 (SEC2). In light of the formation of SEC2 and PEC2, we demonstrate the presence of two binding sites for the transposase within a single terminal repeat. We have found that the sequence of the Mos1 inverted terminal repeats contains overlapping palindromic and mirror motifs, which could account for the binding of two transposase molecules “side by side” on the same inverted terminal repeat. We provide data indicating that the Mos1 transposase dimer is formed within a single terminal repeat through a cooperative pathway. Finally, the concept of a tetrameric synaptic complex may simply account for the inability of a single mariner transposase molecule to interact at the same time with two kinds of DNA: the inverted repeat and the target DNA.


1983 ◽  
Vol 3 (10) ◽  
pp. 1834-1845 ◽  
Author(s):  
G M Gilmartin ◽  
J T Parsons

Transcriptional regulatory elements within the Rous sarcoma virus long terminal repeat were examined by the construction of a series of deletions and small insertions within the U3 region of the long terminal repeat. The analysis of these mutations in chicken embryo cells and COS cells permitted the identification of important transcriptional regulatory elements. Sequences within the region 31 to 18 base pairs upstream of the RNA cap site (-31 to -18), encompassing a TATA box-like sequence, function in the selection of the correct site of transcription initiation and, in addition, augment the efficiency of transcription. These sequences are essential for virus replication. Sequences within the region -79 to -59, overlapping a CAAT box-like sequence, are not required for virus replication and have no obvious effect on viral RNA transcription in the presence of an intact TATA box. However, in mutants lacking a functional TATA sequence, mutations in this region serve to decrease the efficiency of correct transcriptional initiation events.


Sign in / Sign up

Export Citation Format

Share Document