genomic sequences
Recently Published Documents


TOTAL DOCUMENTS

899
(FIVE YEARS 161)

H-INDEX

65
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Karla Helena-Bueno ◽  
Charlotte Rebecca Brown ◽  
Egor Konyk ◽  
Sergey Melnikov

Despite the rapidly increasing number of organisms with sequenced genomes, there is no existing resource that simultaneously contains information about genome sequences and the optimal growth conditions for a given species. In the absence of such a resource, we cannot immediately sort genomic sequences by growth conditions, making it difficult to study how organisms and biological molecules adapt to distinct environments. To address this problem, we have created a database called GSHC (Genome Sequences: Hot, Cold, and everything in between). This database, available at http://melnikovlab.com/gshc, brings together information about the genomic sequences and optimal growth temperatures for 25,324 species, including ~89% of the bacterial species with known genome sequences. Using this database, it is now possible to readily compare genomic sequences from thousands of species and correlate variations in genes and genomes with optimal growth temperatures, at the scale of the entire tree of life. The database interface allows users to retrieve protein sequences sorted by optimal growth temperature for their corresponding species, providing a tool to explore how organisms, genomes, and individual proteins and nucleic acids adapt to certain temperatures. We hope that this database will contribute to medicine and biotechnology by helping to create a better understanding of molecular adaptations to heat and cold, leading to new ways to preserve biological samples, engineer useful enzymes, and develop new biological materials and organisms with the desired tolerance to heat and cold.


2021 ◽  
Author(s):  
Ashutosh Kumar ◽  
Adil Asghar ◽  
Himanshu N. Singh ◽  
Muneeb A. Faiq ◽  
Sujeet Kumar ◽  
...  

Background: A newly emerged SARS-CoV-2 variant B.1.1.529 has worried health policymakers worldwide due to the presence of a large number of mutations in its genomic sequence, especially in the spike protein region. World Health Organization (WHO) has designated it as a global variant of concern (VOC) and has named as Omicron. A surge in new COVID-19 cases has been reported from certain geographical locations, primarily in South Africa (SA) following the emergence of Omicron. Materials and methods: We performed an in silico analysis of the complete genomic sequences of Omicron available on GISAID (until 2021-12-6) to predict the functional impact of the mutations present in this variant on virus-host interactions in terms of viral transmissibility, virulence/lethality, and immune escape. In addition, we performed a correlation analysis of the relative proportion of the genomic sequences of specific SARS-CoV-2 variants (in the period of 01 Oct-29 Nov 2021) with the current epidemiological data (new COVID-19 cases and deaths) from SA to understand whether the Omicron has an epidemiological advantage over existing variants. Results: Compared to the current list of global VOCs/VOIs (as per WHO) Omicron bears more sequence variation, specifically in the spike protein and host receptor-binding motif (RBM). Omicron showed the closest nucleotide and protein sequence homology with Alpha variant for the complete sequence as well as for RBM. The mutations were found primarily condensed in the spike region (28-48) of the virus. Further, the mutational analysis showed enrichment for the mutations decreasing ACE2-binding affinity and RBD protein expression, in contrast, increasing the propensity of immune escape. An inverse correlation of Omicron with Delta variant was noted (r=-0.99, p< .001, 95% CI: -0.99 to -0.97) in the sequences reported from SA post-emergence of the new variant, later showing a decrease. There has been a steep rise in the new COVID-19 cases in parallel with the increase in the proportion of Omicron since the first case (74-100%), on the contrary, the incidences of new deaths have not been increased (r=-0.04, p>0.05, 95% CI =-0.52 to 0.58). Conclusions: Omicron may have greater immune escape ability than the existing VOCs/VOIs. However, there are no clear indications coming out from the predictive mutational analysis that the Omicron may have higher virulence/lethality than other variants, including Delta. The higher ability for immune escape may be a likely reason for the recent surge in Omicron cases in SA.


mSystems ◽  
2021 ◽  
Vol 6 (6) ◽  
Author(s):  
Akinyemi M. Fasemore ◽  
Andrea Helbich ◽  
Mathias C. Walter ◽  
Thomas Dandekar ◽  
Gilles Vergnaud ◽  
...  

Q fever is a zoonotic disease that is a source of active epidemiological concern due to its persistent threat to public health. In this project, we have identified areas in the field of Coxiella research, especially regarding public health and genomic analysis, where there is an inadequacy of resources to monitor, organize, and analyze genomic data from C. burnetii .


2021 ◽  
Vol 23 ◽  
Author(s):  
Rui Yin ◽  
Zihan Luo ◽  
Chee Keong Kwoh

Background: A newly emerging novel coronavirus appeared and rapidly spread worldwide and World Health Organization declared a pandemic on March 11, 2020. The roles and characteristics of coronavirus have captured much attention due to its power of causing a wide variety of infectious diseases, from mild to severe, on humans. The detection of the lethality of human coronavirus is key to estimate the viral toxicity and provide perspectives for treatment. Methods: We developed an alignment-free framework that utilizes machine learning approaches for an ultra-fast and highly accurate prediction of the lethality of human-adapted coronavirus using genomic sequences. We performed extensive experiments through six different feature transformation and machine learning algorithms combining digital signal processing to identify the lethality of possible future novel coronaviruses using existing strains. Results: The results tested on SARS-CoV, MERS-CoV and SARS-CoV-2 datasets show an average 96.7% prediction accuracy. We also provide preliminary analysis validating the effectiveness of our models through other human coronaviruses. Our framework achieves high levels of prediction performance that is alignment-free and based on RNA sequences alone without genome annotations and specialized biological knowledge. Conclusion: The results demonstrate that, for any novel human coronavirus strains, this study can offer a reliable real-time estimation for its viral lethality.


2021 ◽  
Vol 10 (49) ◽  
Author(s):  
Mizanur Rahman ◽  
Rummana Rahim ◽  
Abu Hasan ◽  
Naoko Kawai ◽  
Lavel Chinyama Moonga ◽  
...  

Genomic sequences from a complete SARS-CoV-2 open reading frame (ORF) were obtained from 24 patients diagnosed in May 2020 in Dhaka, Bangladesh. All sequences belonged to clade 20A or 20B, and none were variants of concern. Interestingly, one sequence showed a 161-nucleotide deletion in ORF7a.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kazusato Ohshima ◽  
Shusuke Kawakubo ◽  
Satoshi Muraoka ◽  
Fangluan Gao ◽  
Kanji Ishimaru ◽  
...  

Scallion mosaic virus (ScaMV) belongs to the turnip mosaic virus phylogenetic group of potyvirus and is known to infect domestic scallion plants (Allium chinense) in China and wild Japanese garlic (Allium macrostemon Bunge) in Japan. Wild Japanese garlic plants showing asymptomatic leaves were collected from different sites in Japan during 2012–2015. We found that 73 wild Japanese garlic plants out of 277 collected plants were infected with ScaMV, identified by partial genomic nucleotide sequences of the amplified RT-PCR products using potyvirus-specific primer pairs. Sixty-three ScaMV isolates were then chosen, and those full genomic sequences were determined. We carried out evolutionary analyses of the complete polyprotein-coding sequences and four non-recombinogenic regions of partial genomic sequences. We found that 80% of ScaMV samples have recombination-like genome structure and identified 12 recombination-type patterns in the genomes of the Japanese ScaMV isolates. Furthermore, we found two non-recombinant-type patterns in the Japanese population. Because the wild plants and weeds may often serve as reservoirs of viruses, it is important to study providing the exploratory investigation before emergence in the domestic plants. This is possibly the first epidemiological and evolutionary study of a virus from asymptomatic wild plants.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jaemyung Choi ◽  
David B Lyons ◽  
Daniel Zilberman

Flowering plants utilize small RNA molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with small RNA biogenesis, and without H1 small RNA production quantitatively expands to non-CG methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the small RNA-generating branch of RdDM from non-CG methylated heterochromatin.


PHAGE ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 194-203
Author(s):  
Guillermo Rangel-Pineros ◽  
Andrew Millard ◽  
Slawomir Michniewski ◽  
David Scanlan ◽  
Kimmo Sirén ◽  
...  
Keyword(s):  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 738-738
Author(s):  
Neal Flomenberg ◽  
Dolores Grosso ◽  
Yuri Sykulev ◽  
Nadezhda Anikeyeva ◽  
Yanping Huang ◽  
...  

Abstract SARS-COV-2 (COVID-19) has resulted in over 4 million deaths worldwide. While vaccination has decreased mortality, there remains a need for curative therapies for active infections. Uncertainties regarding the duration of post-vaccination immunity and the rapidity of mutational evolution by this virus suggest that it is unwise to rely on preventative measures alone. Humoral and cellular immunity provide selective pressure for the emergence of variant strains which have eliminated target epitopes. Elimination of immunodominant epitopes provides the strongest advantage to newly emerging strains and, consequently, immunodominant epitopes would be expected to be preferentially eliminated compared to subdominant epitopes in emerging variants. Immunologic treatments for SARS-COV-2 need to be continuously reassessed as new sequence information becomes available. TVGN-489 is a clinical grade product consisting of highly enriched, highly potent CD8+ CTLs recognizing peptides derived from COVID-19 gene/ORF products in an HLA restricted manner. CTLs are generated from apheresis products from individuals who have recovered from COVID-19 infections. Lymphocytes are serially primed and selected using APCs from these donors pulsed with small numbers of peptides encoded by the COVID-19 genome predicted or demonstrated to bind to specific HLA class I alleles. The resulting products are typically &gt;95% CD3+/CD8+, &gt;60% positive by tetramer staining and demonstrate strong cytolytic activity with &gt;60% lysis of peptide pulsed targets typically at an effector to target ratio of 3:1 (See Figure). Given the immunologic pressure to lose dominant target epitopes, we assessed whether the peptides derived from genomic sequences from early SARS-COV-2 strains (and successfully used to generate CTLs from donors infected with these early strains) were still present in the more recently evolved Delta variant. Seven peptides were used to generate CTL products restricted by HLA-A*02:01, the most common allele worldwide. These peptides are derived from the spike (S) and nucleocapsid (N) proteins as well as ORF3a and ORF1ab. The contributions of these peptides to the overall cytotoxicity and tetramer staining range from 2% to 18% without clear immunodominance by one of these peptides. Though identified in early viral strains, these sequences persist in 97.5%-100% of the more than 120 Delta variant sequences present in the NIH database. For HLA-A*01:01, eight peptides derived from the matrix (M) protein as well as ORF1ab and ORF3a were utilized to generate CTLs. Seven of the eight peptides showed binding similar to what was seen with the HLA-A*02:01 peptides (1% to 18%). However, in contrast to HLA-A*02:01, an immunodominant peptide (TTDPSFLGRY, ORF1ab 1637-1646) was noted which was responsible for over half of the observed tetramer binding. This region of ORF1ab was mutated in the Delta variant resulting in loss of this immunodominant epitope from nearly 93% of the Delta genomic sequences in the NIH database. The remaining subdominant peptides were all preserved in 100% of the sequences. Given the growing number of Delta cases, it will be essential to remove this peptide from the HLA-A*01:01 peptide pool used to stimulate SARS-COV-2-specific CD8+ CTLs to avoid encouraging the expansion of cells which would recognize early strains of the virus, but not Delta variants. The remaining CTLs, generated in the absence of TTDPSFLGRY, should be capable of eradicating Delta as well as the earlier prototypic strains of COVID-19. The loss of immunodominant epitopes is not surprising in a virus such as SARS-COV-2, with a high frequency of mutation. This provides an example of immunologic escape similar to what has been described for the Delta variant in the case of HLA-A24. These data are consistent with the hypothesis that immunodominant epitopes will be preferentially eliminated as the virus continues to evolve. They further illustrate the need to monitor viral sequences and to tune the production of CTLs in order to ensure that they can continue to recognize and effectively treat newly emerging variants of COVID-19. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare. OffLabel Disclosure: The drug is Cytotoxic T lymphocytes that are specific to COVID-19. Preclinical data.


Sign in / Sign up

Export Citation Format

Share Document