homologous segment
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Vol 11 ◽  
Author(s):  
Congli Wang ◽  
Mauricio Ulloa ◽  
Robert L. Nichols ◽  
Philip A. Roberts

Plants evolve innate immunity including resistance genes to defend against pest and pathogen attack. Our previous studies in cotton (Gossypium spp.) revealed that one telomeric segment on chromosome (Chr) 11 in G. hirsutum cv. Acala NemX (rkn1 locus) contributed to transgressive resistance to the plant parasitic nematode Meloidogyne incognita, but the highly homologous segment on homoeologous Chr 21 had no resistance contribution. To better understand the resistance mechanism, a bacterial chromosome (BAC) library of Acala N901 (Acala NemX resistance source) was used to select, sequence, and analyze BAC clones associated with SSR markers in the complex rkn1 resistance region. Sequence alignment with the susceptible G. hirsutum cv. TM-1 genome indicated that 23 BACs mapped to TM-1-Chr11 and 18 BACs mapped to TM-1-Chr 21. Genetic and physical mapping confirmed less BAC sequence (53–84%) mapped with the TM-1 genome in the rkn1 region on Chr 11 than to the homologous region (>89%) on Chr 21. A 3.1-cM genetic distance between the rkn1 flanking markers CIR316 and CIR069 was mapped in a Pima S-7 × Acala NemX RIL population with a physical distance ∼1 Mbp in TM-1. NCBI Blast and Gene annotation indicated that both Chr 11 and Chr 21 harbor resistance gene-rich cluster regions, but more multiple homologous copies of Resistance (R) proteins and of adjacent transposable elements (TE) are present within Chr 11 than within Chr 21. (CC)-NB-LRR type R proteins were found in the rkn1 region close to CIR316, and (TIR)-NB-LRR type R proteins were identified in another resistance rich region 10 cM from CIR 316 (∼3.1 Mbp in the TM-1 genome). The identified unique insertion/deletion in NB-ARC domain, different copies of LRR domain, multiple copies or duplication of R proteins, adjacent protein kinases, or TE in the rkn1 region on Chr 11 might be major factors contributing to complex recombination and transgressive resistance.


2019 ◽  
Author(s):  
Laurent Acquaviva ◽  
Michiel Boekhout ◽  
Mehmet E. Karasu ◽  
Kevin Brick ◽  
Florencia Pratto ◽  
...  

Sex chromosomes in males share only a diminutive homologous segment, the pseudoautosomal region (PAR), wherein meiotic double-strand breaks (DSBs), pairing, and crossing over must occur for correct segregation. How cells ensure PAR recombination is unknown. Here we delineate cis-and trans-acting factors that control PAR ultrastructure and make the PAR the hottest area of DSB formation in the male mouse genome. Prior to DSB formation, PAR chromosome axes elongate, sister chromatids separate, and DSB-promoting factors hyperaccumulate. These phenomena are linked to mo-2 minisatellite arrays and require ANKRD31 protein. We propose that the repetitive PAR sequence confers unique chromatin and higher order structures crucial for DSB formation, X–Y pairing, and recombination. Our findings establish a mechanistic paradigm of mammalian sex chromosome segregation during spermatogenesis.


2006 ◽  
Vol 188 (22) ◽  
pp. 7971-7976 ◽  
Author(s):  
Sadanari Jindou ◽  
Ilya Borovok ◽  
Marco T. Rincon ◽  
Harry J. Flint ◽  
Dionysios A. Antonopoulos ◽  
...  

ABSTRACT A 17-kb scaffoldin gene cluster in Ruminococcus flavefaciens strain FD-1 was compared with the homologous segment published for strain 17. Although the general design of the cluster is identical in the two strains, significant differences in the modular architecture of the scaffoldin proteins were discovered, implying strain-specific divergence in cellulosome organization.


2004 ◽  
Vol 108 (4) ◽  
pp. 317-321 ◽  
Author(s):  
N. Bosak ◽  
R. Yamomoto ◽  
S. Fujisaki ◽  
T. Faraut ◽  
S. Kiuchi ◽  
...  

1999 ◽  
Vol 23 (3) ◽  
pp. 355-365 ◽  
Author(s):  
JL Garibay-Tupas ◽  
K Csiszar ◽  
M Fox ◽  
S Povey ◽  
GD Bryant-Greenwood

Relaxins are known endocrine and autocrine/paracrine hormones that play a major role in reproduction. In the human there are two relaxin genes, H1 and H2 which share 90% sequence homology within their coding region. The biological and evolutionary significance of two highly homologous and biologically active human relaxins is unknown. In order to achieve a better understanding of the regulatory mechanisms involved in the differential expression of these two genes and to gain insight into their role(s) in the preterm premature rupture of the membranes, we have investigated the properties of their 5'-upstream regions and mapped them both by radiation hybrid and breakpoint mapping into the same chromosome 9p24.1 locus. The 5' ends of these relaxin genes could be divided into a proximal highly homologous segment and a distal non-homologous region. Within the proximal region are contained several putative regulatory elements common to both genes, suggesting a similar regulatory mechanism. The clustering of the relaxin genes within the same chromosomal locus suggests that these genes may be under a common regulation. On the other hand, a distinct gene-specific regulation may also exist for the individual relaxin genes since cis elements specific to each gene were identified at their 5' ends. Moreover, the observed divergence at the distal region of their 5'-upstream sequences may provide the structural features that act as gene-specific transcription regulators. Since the two genes are highly homologous in both their coding and flanking regions, the divergence at the distal region of their 5' ends may be important in the regulation of these genes and in their involvement in the pathology of preterm birth.


1998 ◽  
Vol 329 (2) ◽  
pp. 359-367 ◽  
Author(s):  
Wolfhard BANDLOW ◽  
Gertrud STROBEL ◽  
Roland SCHRICKER

Major adenylate kinase (Aky2p) from yeast has no cleavable presequence and occurs in identical form in the mitochondrial intermembrane space (6-8%) and in the cytoplasm (approx. 90%). To identify the signal(s) on Aky2p that might be required for mitochondrial import, the N-terminal region was examined. The N-terminus of Aky2p can guide at least two cytoplasmic passengers, dihydrofolate reductase from mouse and UMP kinase (Ura6p) from yeast, to the intermembrane space in vivo, showing that the N-terminus harbours import information. In contrast, deletion of the eight N-terminal amino acid residues or the introduction of two compensating frameshifts into this segment does not abolish translocation into the organelle's intermembrane space. Thus internal targeting and sorting information must be present in Aky2p as well. Neither a pronounced amphiphilic α-helical moment nor positive charges in the N-terminal region is a necessary prerequisite for Aky2p to reach the intermembrane space. Even a surplus of negative charges in mutant N-termini does not impede basal import into the correct submitochondrial compartment. The potential to form an amphipathic α-helical structure of five to eight residues close to the N-terminus significantly improves import efficiency, whereas extension of this amphipathic structure, e.g. by replacing it with the homologous segment of Aky3p, a mitochondrial matrix protein from yeast, leads to misdirection of the chimaera to the matrix compartment. This shows that the topogenic N-terminal signal of Aky3p is dominant over the presumptive internal intermembrane space-targeting signal of Aky2p and argues that the sorting of wild-type Aky2p to the intermembrane space is not due to the presence in the protein of a specific sorting sequence for the intermembrane space, but rather is the consequence of being imported but not being sorted to the inner compartment. Some Aky2 mutant proteins are susceptible to proteolysis in the cytoplasm, indicating incorrect folding. They are nevertheless efficiently rescued by uptake into mitochondria, suggesting a negative correlation between folding velocity (or folding stability) and efficiency of import.


Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 435-443
Author(s):  
Mingsheng Chen ◽  
Phillip SanMiguel ◽  
Jeffrey L Bennetzen

Abstract Previously, we have demonstrated microcolinearity of gene composition and orientation in sh2/a1-homologous regions of the rice, sorghum, and maize genomes. However, the sh2 and a1 homologues are only about 20 kb apart in both rice and sorghum, while they are separated by about 140 kb in maize. In order to further define sequence organization and conservation in sh2/a1-homologous regions, we have completely sequenced a 42,446-bp segment of sorghum DNA. Four genes were identified: a homologue of sh2, two homologues of a1, and a putative transcriptional regulatory gene. A solo long terminal repeat of the retroelement Leviathan was detected between the two a1 homologues, and eight miniature inverted repeat transposable elements were found in this region. Comparison of the sorghum sequence with the sequence of the homologous segment from rice indicated that only the identified genes were evolutionarily conserved between these two species, which have evolved independently for over 50 million years. The introns of the a1 homologues have evolved faster than the introns of the sh2 homologue. The a1 tandem duplication appears to be an ancient event that may have preceded the ancestral divergence of maize, sorghum, and rice.


1996 ◽  
Vol 184 (2) ◽  
pp. 735-740 ◽  
Author(s):  
L D Barber ◽  
L Percival ◽  
N M Valiante ◽  
L Chen ◽  
C Lee ◽  
...  

The vast majority of new human HLA class I alleles are formed by conversions between existing alleles of the same locus. A notable exception to this rule is HLA-B*4601 formed by replacement of residues 66-76 of the alpha 1 helix of B*1501 by the homologous segment of Cw*0102. This inter-locus recombination, which brings together characteristic elements of HLA-B and HLA-C structure, is shown here to influence function dramatically. Naturally processed peptides bound by B*4601 are distinct from those of its parental allotypes B*1501 and Cw*0102 and dominated by three high abundance peptides. Such increased peptide selectivity by B*4601 is unique among HLA-A,B,C allotypes. For other aspects of function, presence of the small segment of HLA-C-derived sequence in an otherwise HLA-B framework converts B*4601 to an HLA-C-like molecule. Alloreactive cytotoxic T lymphocytes (CTL), natural killer (NK) cells, and cellular glycosidases all recognize B*4601 as though it were an HLA-C allotype. These unusual properties are those of an allotype which has frequencies as high as 20% in south east Asian populations and is associated with predisposition to autoimmune diseases and nasopharyngeal carcinoma.


1993 ◽  
Vol 4 (2) ◽  
pp. 119-123 ◽  
Author(s):  
Steven H. Laval ◽  
Yvonne Boyd

Sign in / Sign up

Export Citation Format

Share Document