An Intelligent Context-aware Congestion Resolution Protocol for Data Dissemination in Vehicular Ad Hoc Networks

2015 ◽  
Vol 20 (2) ◽  
pp. 181-200 ◽  
Author(s):  
Amit Dua ◽  
Neeraj Kumar ◽  
Seema Bawa ◽  
Joel J. P. C. Rodrigues
Information ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 263 ◽  
Author(s):  
Yuhong Li ◽  
Xinyue Shi ◽  
Anders Lindgren ◽  
Zhuo Hu ◽  
Peng Zhang ◽  
...  

Information-centric networking (ICN) technology matches many major requirements of vehicular ad hoc networks (VANETs) in terms of its connectionless networking paradigm accordant with the dynamic environments of VANETs and is increasingly being applied to VANETs. However, wireless transmissions of packets in VANETs using ICN mechanisms can lead to broadcast storms and channel contention, severely affecting the performance of data dissemination. At the same time, frequent changes of topology due to driving at high speeds and environmental obstacles can also lead to link interruptions when too few vehicles are involved in data forwarding. Hence, balancing the number of forwarding vehicular nodes and the number of copies of packets that are forwarded is essential for improving the performance of data dissemination in information-centric networking for vehicular ad-hoc networks. In this paper, we propose a context-aware packet-forwarding mechanism for ICN-based VANETs. The relative geographical position of vehicles, the density and relative distribution of vehicles, and the priority of content are considered during the packet forwarding. Simulation results show that the proposed mechanism can improve the performance of data dissemination in ICN-based VANET in terms of a successful data delivery ratio, packet loss rate, bandwidth usage, data response time, and traversed hops.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Shujuan Wang ◽  
Qian Zhang ◽  
Shuguang Lu

Vehicular Ad hoc NETworks (VANETs) are becoming an important part of people’s daily life, as they support a wild range of applications and have great potential in critical fields such as accident warning, traffic control and management, infotainment, and value-added services. However, the harsh and stringent transmission environment in VANETs poses a great challenge to the efficient and effective data dissemination for VANETs, which is the essential in supporting and providing the desired applications. To resolve this issue, Instantly Decodable Network Coding (IDNC) technology is applied to stand up to the tough transmission conditions and to advance the performance. This paper proposes a novel admission control method that works well with any IDNC-assisted data dissemination algorithm, to achieve fast and reliable data dissemination in VANETs. Firstly, the proposed admission control strategy classifies the safety-related applications as high priority and the user-related applications as low priority. It then conducts different admission policies on these two prioritized applications’ data. An artfully designed network coding-aware admission policy is proposed to regulate the flow of low-priority data requests and to prevent the network from congestion, through comparing the vectorized distances between the data requests and the encoding packets. Moreover, the carefully planned admission strategy is benefit for maximizing the network coding opportunities by inclining to admit requests which can contribute more to the encoding clique, thus further enhancing the system performance. Simulation results approve that the proposed admission control method achieves clear advantages in terms of delay, deadline miss ratio, and download success ratio.


Sign in / Sign up

Export Citation Format

Share Document