scholarly journals NCaAC: Network Coding-Aware Admission Control for Prioritized Data Dissemination in Vehicular Ad Hoc Networks

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Shujuan Wang ◽  
Qian Zhang ◽  
Shuguang Lu

Vehicular Ad hoc NETworks (VANETs) are becoming an important part of people’s daily life, as they support a wild range of applications and have great potential in critical fields such as accident warning, traffic control and management, infotainment, and value-added services. However, the harsh and stringent transmission environment in VANETs poses a great challenge to the efficient and effective data dissemination for VANETs, which is the essential in supporting and providing the desired applications. To resolve this issue, Instantly Decodable Network Coding (IDNC) technology is applied to stand up to the tough transmission conditions and to advance the performance. This paper proposes a novel admission control method that works well with any IDNC-assisted data dissemination algorithm, to achieve fast and reliable data dissemination in VANETs. Firstly, the proposed admission control strategy classifies the safety-related applications as high priority and the user-related applications as low priority. It then conducts different admission policies on these two prioritized applications’ data. An artfully designed network coding-aware admission policy is proposed to regulate the flow of low-priority data requests and to prevent the network from congestion, through comparing the vectorized distances between the data requests and the encoding packets. Moreover, the carefully planned admission strategy is benefit for maximizing the network coding opportunities by inclining to admit requests which can contribute more to the encoding clique, thus further enhancing the system performance. Simulation results approve that the proposed admission control method achieves clear advantages in terms of delay, deadline miss ratio, and download success ratio.

Author(s):  
Farhan H. Mirani ◽  
Anthony Busson ◽  
Cedric Adjih

In vehicular ad hoc networks (VANETs), for a large number of applications, the destination of relevant information such as alerts, is the whole set of vehicles located inside a given area. Therefore dissemination with efficient broadcast is an essential communication primitive. One of the families of broadcast protocols suitable for such networks, is the family of delay-based broadcast protocols, where farthest receivers retransmit first and where transmissions also act as implicit acknowledgements. For lossless networks, such protocols may approach the optimum efficiency. However with realistic loss models of VANET wireless communication, their performance is noticeably degraded. This is because packet losses have a double effect: directly on the amount of successfully received packets and indirectly with implicit acknowledgement misses. In this article, in order to combat the effects of packet losses, we combine delay-based broadcast with network coding, through a new protocol: Delay-based Opportunistic Network Coding protocol (DONC). By design, DONC aims at cancelling the twofold effects of packet and implicit acknowledgement losses. We describe the details of the DONC protocol, and we study its behavior, with realistic models and simulations. Results illustrate the excellent performance of the protocol.


Sign in / Sign up

Export Citation Format

Share Document