scholarly journals Sharpenings of Li's Criterion for the Riemann Hypothesis

2006 ◽  
Vol 9 (1) ◽  
pp. 53-63 ◽  
Author(s):  
André Voros
2012 ◽  
Vol 08 (03) ◽  
pp. 589-597 ◽  
Author(s):  
XIAN-JIN LI

In [Complements to Li's criterion for the Riemann hypothesis, J. Number Theory77 (1999) 274–287] Bombieri and Lagarias observed the remarkable identity [1 - (1 - 1/s)n] + [1 - (1 - 1/(1 - s))n] = [1 - (1 - 1/s)n]⋅[1 - (1 - 1/(1 - s))n], and pointed out that the positivity in Li's criterion [The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory65 (1997) 325–333] has the same meaning as in Weil's criterion [Sur les "formules explicites" de la théorie des nombres premiers, in Oeuvres Scientifiques, Collected Paper, Vol. II (Springer-Verlag, New York, 1979), pp. 48–61]. Let λn = ∑ρ[1 - (1 - 1/ρ)n] for n = 1, 2, …, where ρ runs over the complex zeros of the Riemann zeta function ζ(s). In this note, a certain truncation of λn is expressed as Weil's explicit formula [Sur les "formules explicites" de la théorie des nombres premiers, in Oeuvres Scientifiques, Collected Paper, Vol. II (Springer-Verlag, New York, 1979), pp. 48–61] for each positive integer n. By using the Bombieri and Lagarias' identity, we prove that the positivity of these truncations implies the Riemann hypothesis. If these truncations have suitable upper bounds, we prove that all nontrivial zeros of the Riemann zeta function lie on the critical line.


1999 ◽  
Vol 77 (2) ◽  
pp. 274-287 ◽  
Author(s):  
Enrico Bombieri ◽  
Jeffrey C. Lagarias

Mathematika ◽  
2016 ◽  
Vol 63 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Sandro Bettin ◽  
Steven M. Gonek
Keyword(s):  

Author(s):  
CARLO SANNA

Abstract Let $g \geq 2$ be an integer. A natural number is said to be a base-g Niven number if it is divisible by the sum of its base-g digits. Assuming Hooley’s Riemann hypothesis, we prove that the set of base-g Niven numbers is an additive basis, that is, there exists a positive integer $C_g$ such that every natural number is the sum of at most $C_g$ base-g Niven numbers.


Sign in / Sign up

Export Citation Format

Share Document