Human actions recognition: an approach based on stable motion boundary fields

2017 ◽  
Vol 77 (16) ◽  
pp. 20715-20729 ◽  
Author(s):  
Imen Lassoued ◽  
Ezzeddine Zagrouba
2013 ◽  
Vol 859 ◽  
pp. 498-502 ◽  
Author(s):  
Zhi Qiang Wei ◽  
Ji An Wu ◽  
Xi Wang

In order to realize the identification of human daily actions, a method of identifying human daily actions is realized in this paper, which transforms this problem into converting human action recognition into analyzing feature sequence. Then the feature sequence combined with improved LCS algorithm could realize the human actions recognition. Data analysis and experimental results show the recognition rate of this method is high and speed is fast, and this applied technology will have broad prospects.


2015 ◽  
Vol 713-715 ◽  
pp. 2152-2155 ◽  
Author(s):  
Shao Ping Zhu

According to the problem that achieves robust human actions recognition from image sequences in computer vision, using the Iterative Querying Heuristic algorithm as a guide, a improved Multiple Instance Learning (MIL) method is proposed for human action recognition in video image sequences. Experiments show that the new method can quickly recognize human actions and achieve high recognition rates, and on the Weizmann database validate our analysis.


Author(s):  
Bogdan Alexandru Radulescu ◽  
Victorita Radulescu

Abstract Action Recognition is a domain that gains interest along with the development of specific motion capture equipment, hardware and power of processing. Its many applications in domains such as national security and behavior analysis make it even more popular among the scientific community, especially considering the ascending trend of machine learning methods. Nowadays approaches necessary to solve real life problems through human actions recognition became more interesting. To solve this problem are mainly two approaches when attempting to build a classifier, either using RGB images or sensor data, or where possible a combination of these two. Both methods have advantages and disadvantages and domains of utilization in real life problems, solvable through actions recognition. Using RGB input makes it possible to adopt a classifier on almost any infrastructure without specialized equipment, whereas combining video with sensor data provides a higher accuracy, albeit at a higher cost. Neural networks and especially convolutional neural networks are the starting point for human action recognition. By their nature, they can recognize very well spatial and temporal features, making them ideal for RGB images or sequences of RGB images. In the present paper is proposed the convolutional neural network architecture based on 2D kernels. Its structure, along with metrics measuring the performance, advantages and disadvantages are here illustrated. This solution based on 2D convolutions is fast, but has lower performance compared to other known solutions. The main problem when dealing with videos is the context extraction from a sequence of frames. Video classification using 2D Convolutional Layers is realized either by the most significant frame or by frame to frame, applying a probability distribution over the partial classes to obtain the final prediction. To classify actions, especially when differences between them are subtle, and consists of only a small part of the overall image is difficult. When classifying via the key frames, the total accuracy obtained is around 10%. The other approach, classifying each frame individually, proved to be too computationally expensive with negligible gains.


Sign in / Sign up

Export Citation Format

Share Document