An adaptive second-order partial differential equation based on TV equation and p-Laplacian equation for image denoising

2019 ◽  
Vol 78 (13) ◽  
pp. 18095-18112 ◽  
Author(s):  
Xiaojuan Zhang ◽  
Wanzhou Ye
2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
Yunjiao Bai ◽  
Quan Zhang ◽  
Hong Shangguan ◽  
Zhiguo Gui ◽  
Yi Liu ◽  
...  

The traditional fourth-order nonlinear diffusion denoising model suffers the isolated speckles and the loss of fine details in the processed image. For this reason, a new fourth-order partial differential equation based on the patch similarity modulus and the difference curvature is proposed for image denoising. First, based on the intensity similarity of neighbor pixels, this paper presents a new edge indicator called patch similarity modulus, which is strongly robust to noise. Furthermore, the difference curvature which can effectively distinguish between edges and noise is incorporated into the denoising algorithm to determine the diffusion process by adaptively adjusting the size of the diffusion coefficient. The experimental results show that the proposed algorithm can not only preserve edges and texture details, but also avoid isolated speckles and staircase effect while filtering out noise. And the proposed algorithm has a better performance for the images with abundant details. Additionally, the subjective visual quality and objective evaluation index of the denoised image obtained by the proposed algorithm are higher than the ones from the related methods.


1922 ◽  
Vol 41 ◽  
pp. 76-81
Author(s):  
E. T. Copson

Riemann's method of solution of a linear second order partial differential equation of hyperbolic type was introduced in his memoir on sound waves. It has been used by Darboux in discussing the equationwhere α, β, γ are functions of x and y.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yin-shan Yun ◽  
Ying Wen ◽  
Temuer Chaolu ◽  
Randolph Rach

Abstract For the boundary value problem (BVP) of a second-order partial differential equation on a plane triangle area, we propose a new algorithm based on the Adomian decomposition method (ADM) combined with a segmented technique. In addition, we present a new theorem that ensures the convergence of the algorithm. By this algorithm, the model for the effect of regional recharge on the plane triangle groundwater flow region is solved, from which we obtain the segmented exact solution of the problem, which satisfies the governing equation and all of the specified boundary conditions. Then, by the algorithm combined with Taylor’s formula, the heterogeneous aquifer model on the plane triangle groundwater flow region is considered, from which we obtain the segmented high-precision approximate solution of the problem.


Sign in / Sign up

Export Citation Format

Share Document