scholarly journals A deep learning approach to building an intelligent video surveillance system

Author(s):  
Jie Xu

Abstract Recent advances in the field of object detection and face recognition have made it possible to develop practical video surveillance systems with embedded object detection and face recognition functionalities that are accurate and fast enough for commercial uses. In this paper, we compare some of the latest approaches to object detection and face recognition and provide reasons why they may or may not be amongst the best to be used in video surveillance applications in terms of both accuracy and speed. It is discovered that Faster R-CNN with Inception ResNet V2 is able to achieve some of the best accuracies while maintaining real-time rates. Single Shot Detector (SSD) with MobileNet, on the other hand, is incredibly fast and still accurate enough for most applications. As for face recognition, FaceNet with Multi-task Cascaded Convolutional Networks (MTCNN) achieves higher accuracy than advances such as DeepFace and DeepID2+ while being faster. An end-to-end video surveillance system is also proposed which could be used as a starting point for more complex systems. Various experiments have also been attempted on trained models with observations explained in detail. We finish by discussing video object detection and video salient object detection approaches which could potentially be used as future improvements to the proposed system.

2014 ◽  
Vol 511-512 ◽  
pp. 530-535 ◽  
Author(s):  
Ya Zhang ◽  
Cang Rong Zhao ◽  
Lai Gong Guo

Since most of the current video surveillance systems are static or dynamic track based on video detection, the paper puts forward the scheme of sound source localization and camera dynamic acquisition in the intelligent video surveillance system. The microphone array is used to locate the sound source, then the camera is steered to monitor sound source position and alarm is executed by image analysis. The experimental results show that the system can achieve effective positioning of the sound source and alarm at abnormal condition under a low-niose environment.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Min-Gu Kim ◽  
Hae-Min Moon ◽  
Yongwha Chung ◽  
Sung Bum Pan

Biometrics verification can be efficiently used for intrusion detection and intruder identification in video surveillance systems. Biometrics techniques can be largely divided into traditional and the so-called soft biometrics. Whereas traditional biometrics deals with physical characteristics such as face features, eye iris, and fingerprints, soft biometrics is concerned with such information as gender, national origin, and height. Traditional biometrics is versatile and highly accurate. But it is very difficult to get traditional biometric data from a distance and without personal cooperation. Soft biometrics, although featuring less accuracy, can be used much more freely though. Recently, many researchers have been made on human identification using soft biometrics data collected from a distance. In this paper, we use both traditional and soft biometrics for human identification and propose a framework for solving such problems as lighting, occlusion, and shadowing.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jin Su Kim ◽  
Min-Gu Kim ◽  
Sung Bum Pan

AbstractConventional surveillance systems for preventing accidents and incidents do not identify 95% thereof after 22 min when one person monitors a plurality of closed circuit televisions (CCTV). To address this issue, while computer-based intelligent video surveillance systems have been studied to notify users of abnormal situations when they happen, it is not commonly used in real environment because of weakness of personal information leaks and high power consumption. To address this issue, intelligent video surveillance systems based on small devices have been studied. This paper suggests implement an intelligent video surveillance system based on embedded modules for intruder detection based on information learning, fire detection based on color and motion information, and loitering and fall detection based on human body motion. Moreover, an algorithm and an embedded module optimization method are applied for real-time processing. The implemented algorithm showed performance of 88.51% for intruder detection, 92.63% for fire detection, 80% for loitering detection and 93.54% for fall detection. The result of comparison before and after optimization about the algorithm processing time showed 50.53% of decrease, implying potential real-time driving of the intelligent image monitoring system based on embedded modules.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4419
Author(s):  
Hao Li ◽  
Tianhao Xiezhang ◽  
Cheng Yang ◽  
Lianbing Deng ◽  
Peng Yi

In the construction process of smart cities, more and more video surveillance systems have been deployed for traffic, office buildings, shopping malls, and families. Thus, the security of video surveillance systems has attracted more attention. At present, many researchers focus on how to select the region of interest (RoI) accurately and then realize privacy protection in videos by selective encryption. However, relatively few researchers focus on building a security framework by analyzing the security of a video surveillance system from the system and data life cycle. By analyzing the surveillance video protection and the attack surface of a video surveillance system in a smart city, we constructed a secure surveillance framework in this manuscript. In the secure framework, a secure video surveillance model is proposed, and a secure authentication protocol that can resist man-in-the-middle attacks (MITM) and replay attacks is implemented. For the management of the video encryption key, we introduced the Chinese remainder theorem (CRT) on the basis of group key management to provide an efficient and secure key update. In addition, we built a decryption suite based on transparent encryption to ensure the security of the decryption environment. The security analysis proved that our system can guarantee the forward and backward security of the key update. In the experiment environment, the average decryption speed of our system can reach 91.47 Mb/s, which can meet the real-time requirement of practical applications.


Sign in / Sign up

Export Citation Format

Share Document