Deep learning enhanced attributes conditional random forest for robust facial expression recognition

Author(s):  
Haibin Liao ◽  
Dianhua Wang ◽  
Ping Fan ◽  
Ling Ding
Information ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 375 ◽  
Author(s):  
Yingying Wang ◽  
Yibin Li ◽  
Yong Song ◽  
Xuewen Rong

As an important part of emotion research, facial expression recognition is a necessary requirement in human–machine interface. Generally, a face expression recognition system includes face detection, feature extraction, and feature classification. Although great success has been made by the traditional machine learning methods, most of them have complex computational problems and lack the ability to extract comprehensive and abstract features. Deep learning-based methods can realize a higher recognition rate for facial expressions, but a large number of training samples and tuning parameters are needed, and the hardware requirement is very high. For the above problems, this paper proposes a method combining features that extracted by the convolutional neural network (CNN) with the C4.5 classifier to recognize facial expressions, which not only can address the incompleteness of handcrafted features but also can avoid the high hardware configuration in the deep learning model. Considering some problems of overfitting and weak generalization ability of the single classifier, random forest is applied in this paper. Meanwhile, this paper makes some improvements for C4.5 classifier and the traditional random forest in the process of experiments. A large number of experiments have proved the effectiveness and feasibility of the proposed method.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3046
Author(s):  
Shervin Minaee ◽  
Mehdi Minaei ◽  
Amirali Abdolrashidi

Facial expression recognition has been an active area of research over the past few decades, and it is still challenging due to the high intra-class variation. Traditional approaches for this problem rely on hand-crafted features such as SIFT, HOG, and LBP, followed by a classifier trained on a database of images or videos. Most of these works perform reasonably well on datasets of images captured in a controlled condition but fail to perform as well on more challenging datasets with more image variation and partial faces. In recent years, several works proposed an end-to-end framework for facial expression recognition using deep learning models. Despite the better performance of these works, there are still much room for improvement. In this work, we propose a deep learning approach based on attentional convolutional network that is able to focus on important parts of the face and achieves significant improvement over previous models on multiple datasets, including FER-2013, CK+, FERG, and JAFFE. We also use a visualization technique that is able to find important facial regions to detect different emotions based on the classifier’s output. Through experimental results, we show that different emotions are sensitive to different parts of the face.


2018 ◽  
Vol 84 ◽  
pp. 251-261 ◽  
Author(s):  
Yuanyuan Liu ◽  
Xiaohui Yuan ◽  
Xi Gong ◽  
Zhong Xie ◽  
Fang Fang ◽  
...  

Author(s):  
Ariel Ruiz-Garcia ◽  
Nicola Webb ◽  
Vasile Palade ◽  
Mark Eastwood ◽  
Mark Elshaw

2019 ◽  
Vol 8 (2S11) ◽  
pp. 4047-4051

The automatic detection of facial expressions is an active research topic, since its wide fields of applications in human-computer interaction, games, security or education. However, the latest studies have been made in controlled laboratory environments, which is not according to real world scenarios. For that reason, a real time Facial Expression Recognition System (FERS) is proposed in this paper, in which a deep learning approach is applied to enhance the detection of six basic emotions: happiness, sadness, anger, disgust, fear and surprise in a real-time video streaming. This system is composed of three main components: face detection, face preparation and face expression classification. The results of proposed FERS achieve a 65% of accuracy, trained over 35558 face images..


Sign in / Sign up

Export Citation Format

Share Document