Time–space MIMO system with faster-than-nyquist signaling in frequency-selective fading channel

Author(s):  
Jui Teng Wang
2011 ◽  
Vol E94-B (12) ◽  
pp. 3610-3613 ◽  
Author(s):  
Juinn-Horng DENG ◽  
Nuri CELIK ◽  
Zhengqing YUN ◽  
Magdy F. ISKANDER

2019 ◽  
Vol 3 (1) ◽  
pp. 19
Author(s):  
Pebri Yeni Samosir ◽  
Nyoman Pramaita ◽  
I Gst A. Komang Diafari Djuni Hartawan ◽  
Ni Made Ary Esta Dewi Wirastuti

Multiple Input Multiple Output (MIMO) technology is a technique that can be used to overcome multipath fading. The multipath fading is caused by signals coming from several paths that experience different attenuations, delays and phases. In a multipath condition, an impulse that sent by the transmitter, will be received by the recipient not as an impulse but as a pulse with a spread width that called delay spread. Delay spread can cause intersymbol interference (ISI) and bit translation errors from the information received. To determine the effect of delay spread on the MIMO system, then MIMO system performance research was performed on flat fading and frequency selective fading channels using the Space Time Block Code (STBC) coding technique. This research was conducted using MatLab 2018a software. The simulation results show that the MIMO STBC system performance on flat fading channels is better than the MIMO STBC system performance on the frequency selective fading channel. This result is analyzed based on the value of BER vs. Eb/No and eye diagram.


2012 ◽  
Vol 433-440 ◽  
pp. 5506-5511 ◽  
Author(s):  
Na Li ◽  
Hao Zhang ◽  
Jing Jing Wang ◽  
T. Aaron Gulliver

Two pulse waveforms are designed and analyzed for 60GHz pulse modulation systems. An indoor frequency selective fading channel model is introduced for single user 60GHz TH-PPM systems. The capacity with this channel model of a 60GHz TH-PPM system based on the designed pulses is derived. Performance results are presented to illustrate the effects of the pulse waveforms and channel properties on the channel capacity.


Sign in / Sign up

Export Citation Format

Share Document