scholarly journals Evolutionary algorithms and submodular functions: benefits of heavy-tailed mutations

2021 ◽  
Author(s):  
Francesco Quinzan ◽  
Andreas Göbel ◽  
Markus Wagner ◽  
Tobias Friedrich
2019 ◽  
Vol 275 ◽  
pp. 279-294 ◽  
Author(s):  
Chao Qian ◽  
Yang Yu ◽  
Ke Tang ◽  
Xin Yao ◽  
Zhi-Hua Zhou

2006 ◽  
Vol 11 (1) ◽  
pp. 12-24 ◽  
Author(s):  
Alexander von Eye

At the level of manifest categorical variables, a large number of coefficients and models for the examination of rater agreement has been proposed and used. The most popular of these is Cohen's κ. In this article, a new coefficient, κ s , is proposed as an alternative measure of rater agreement. Both κ and κ s allow researchers to determine whether agreement in groups of two or more raters is significantly beyond chance. Stouffer's z is used to test the null hypothesis that κ s = 0. The coefficient κ s allows one, in addition to evaluating rater agreement in a fashion parallel to κ, to (1) examine subsets of cells in agreement tables, (2) examine cells that indicate disagreement, (3) consider alternative chance models, (4) take covariates into account, and (5) compare independent samples. Results from a simulation study are reported, which suggest that (a) the four measures of rater agreement, Cohen's κ, Brennan and Prediger's κ n , raw agreement, and κ s are sensitive to the same data characteristics when evaluating rater agreement and (b) both the z-statistic for Cohen's κ and Stouffer's z for κ s are unimodally and symmetrically distributed, but slightly heavy-tailed. Examples use data from verbal processing and applicant selection.


2020 ◽  
Vol 2020 (1) ◽  
pp. 105-108
Author(s):  
Ali Alsam

Vision is the science that informs us about the biological and evolutionary algorithms that our eyes, opticnerves and brains have chosen over time to see. This article is an attempt to solve the problem of colour to grey conversion, by borrowing ideas from vision science. We introduce an algorithm that measures contrast along the opponent colour directions and use the results to combine a three dimensional colour space into a grey. The results indicate that the proposed algorithm competes with the state of art algorithms.


2019 ◽  
Author(s):  
Anders Andreasen

In this article the optimization of a realistic oil and gas separation plant has been studied. Two different fluids are investigated and compared in terms of the optimization potential. Using Design of Computer Experiment (DACE) via Latin Hypercube Sampling (LHS) and rigorous process simulations, surrogate models using Kriging have been established for selected model responses. The surrogate models are used in combination with a variety of different evolutionary algorithms for optimizing the operating profit, mainly by maximizing the recoverable oil production. A total of 10 variables representing pressure and temperature various key places in the separation plant are optimized to maximize the operational profit. The optimization is bounded in the variables and a constraint function is included to ensure that the optimal solution allows export of oil with an RVP < 12 psia. The main finding is that, while a high pressure is preferred in the first separation stage, apparently a single optimal setting for the pressure in downstream separators does not appear to exist. In the second stage separator apparently two different, yet equally optimal, settings are revealed. In the third and final separation stage a correlation between the separator pressure and the applied inlet temperature exists, where different combinations of pressure and temperature yields equally optimal results.<br>


Sign in / Sign up

Export Citation Format

Share Document