Nonlinear Graph Learning-Convolutional Networks for Node Classification

Author(s):  
Linjun Chen ◽  
Xingyi Liu ◽  
Zexin Li
Author(s):  
Zhichao Huang ◽  
Xutao Li ◽  
Yunming Ye ◽  
Michael K. Ng

Graph Convolutional Networks (GCNs) have been extensively studied in recent years. Most of existing GCN approaches are designed for the homogenous graphs with a single type of relation. However, heterogeneous graphs of multiple types of relations are also ubiquitous and there is a lack of methodologies to tackle such graphs. Some previous studies address the issue by performing conventional GCN on each single relation and then blending their results. However, as the convolutional kernels neglect the correlations across relations, the strategy is sub-optimal. In this paper, we propose the Multi-Relational Graph Convolutional Network (MR-GCN) framework by developing a novel convolution operator on multi-relational graphs. In particular, our multi-dimension convolution operator extends the graph spectral analysis into the eigen-decomposition of a Laplacian tensor. And the eigen-decomposition is formulated with a generalized tensor product, which can correspond to any unitary transform instead of limited merely to Fourier transform. We conduct comprehensive experiments on four real-world multi-relational graphs to solve the semi-supervised node classification task, and the results show the superiority of MR-GCN against the state-of-the-art competitors.


2020 ◽  
Vol 34 (04) ◽  
pp. 4215-4222
Author(s):  
Binyuan Hui ◽  
Pengfei Zhu ◽  
Qinghua Hu

Graph convolutional networks (GCN) have achieved promising performance in attributed graph clustering and semi-supervised node classification because it is capable of modeling complex graphical structure, and jointly learning both features and relations of nodes. Inspired by the success of unsupervised learning in the training of deep models, we wonder whether graph-based unsupervised learning can collaboratively boost the performance of semi-supervised learning. In this paper, we propose a multi-task graph learning model, called collaborative graph convolutional networks (CGCN). CGCN is composed of an attributed graph clustering network and a semi-supervised node classification network. As Gaussian mixture models can effectively discover the inherent complex data distributions, a new end to end attributed graph clustering network is designed by combining variational graph auto-encoder with Gaussian mixture models (GMM-VGAE) rather than the classic k-means. If the pseudo-label of an unlabeled sample assigned by GMM-VGAE is consistent with the prediction of the semi-supervised GCN, it is selected to further boost the performance of semi-supervised learning with the help of the pseudo-labels. Extensive experiments on benchmark graph datasets validate the superiority of our proposed GMM-VGAE compared with the state-of-the-art attributed graph clustering networks. The performance of node classification is greatly improved by our proposed CGCN, which verifies graph-based unsupervised learning can be well exploited to enhance the performance of semi-supervised learning.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 148226-148236
Author(s):  
Nan Jia ◽  
Xiaolin Tian ◽  
Yang Zhang ◽  
Fengge Wang

Sign in / Sign up

Export Citation Format

Share Document