scholarly journals MR-GCN: Multi-Relational Graph Convolutional Networks based on Generalized Tensor Product

Author(s):  
Zhichao Huang ◽  
Xutao Li ◽  
Yunming Ye ◽  
Michael K. Ng

Graph Convolutional Networks (GCNs) have been extensively studied in recent years. Most of existing GCN approaches are designed for the homogenous graphs with a single type of relation. However, heterogeneous graphs of multiple types of relations are also ubiquitous and there is a lack of methodologies to tackle such graphs. Some previous studies address the issue by performing conventional GCN on each single relation and then blending their results. However, as the convolutional kernels neglect the correlations across relations, the strategy is sub-optimal. In this paper, we propose the Multi-Relational Graph Convolutional Network (MR-GCN) framework by developing a novel convolution operator on multi-relational graphs. In particular, our multi-dimension convolution operator extends the graph spectral analysis into the eigen-decomposition of a Laplacian tensor. And the eigen-decomposition is formulated with a generalized tensor product, which can correspond to any unitary transform instead of limited merely to Fourier transform. We conduct comprehensive experiments on four real-world multi-relational graphs to solve the semi-supervised node classification task, and the results show the superiority of MR-GCN against the state-of-the-art competitors.

2021 ◽  
Vol 11 (15) ◽  
pp. 6975
Author(s):  
Tao Zhang ◽  
Lun He ◽  
Xudong Li ◽  
Guoqing Feng

Lipreading aims to recognize sentences being spoken by a talking face. In recent years, the lipreading method has achieved a high level of accuracy on large datasets and made breakthrough progress. However, lipreading is still far from being solved, and existing methods tend to have high error rates on the wild data and have the defects of disappearing training gradient and slow convergence. To overcome these problems, we proposed an efficient end-to-end sentence-level lipreading model, using an encoder based on a 3D convolutional network, ResNet50, Temporal Convolutional Network (TCN), and a CTC objective function as the decoder. More importantly, the proposed architecture incorporates TCN as a feature learner to decode feature. It can partly eliminate the defects of RNN (LSTM, GRU) gradient disappearance and insufficient performance, and this yields notable performance improvement as well as faster convergence. Experiments show that the training and convergence speed are 50% faster than the state-of-the-art method, and improved accuracy by 2.4% on the GRID dataset.


Author(s):  
Liang Yang ◽  
Zesheng Kang ◽  
Xiaochun Cao ◽  
Di Jin ◽  
Bo Yang ◽  
...  

In the past few years, semi-supervised node classification in attributed network has been developed rapidly. Inspired by the success of deep learning, researchers adopt the convolutional neural network to develop the Graph Convolutional Networks (GCN), and they have achieved surprising classification accuracy by considering the topological information and employing the fully connected network (FCN). However, the given network topology may also induce a performance degradation if it is directly employed in classification, because it may possess high sparsity and certain noises. Besides, the lack of learnable filters in GCN also limits the performance. In this paper, we propose a novel Topology Optimization based Graph Convolutional Networks (TO-GCN) to fully utilize the potential information by jointly refining the network topology and learning the parameters of the FCN. According to our derivations, TO-GCN is more flexible than GCN, in which the filters are fixed and only the classifier can be updated during the learning process. Extensive experiments on real attributed networks demonstrate the superiority of the proposed TO-GCN against the state-of-the-art approaches.


2020 ◽  
Vol 34 (04) ◽  
pp. 5892-5899
Author(s):  
Ke Sun ◽  
Zhouchen Lin ◽  
Zhanxing Zhu

Graph Convolutional Networks (GCNs) play a crucial role in graph learning tasks, however, learning graph embedding with few supervised signals is still a difficult problem. In this paper, we propose a novel training algorithm for Graph Convolutional Network, called Multi-Stage Self-Supervised (M3S) Training Algorithm, combined with self-supervised learning approach, focusing on improving the generalization performance of GCNs on graphs with few labeled nodes. Firstly, a Multi-Stage Training Framework is provided as the basis of M3S training method. Then we leverage DeepCluster technique, a popular form of self-supervised learning, and design corresponding aligning mechanism on the embedding space to refine the Multi-Stage Training Framework, resulting in M3S Training Algorithm. Finally, extensive experimental results verify the superior performance of our algorithm on graphs with few labeled nodes under different label rates compared with other state-of-the-art approaches.


Author(s):  
Min Shi ◽  
Yufei Tang ◽  
Xingquan Zhu ◽  
David Wilson ◽  
Jianxun Liu

Networked data often demonstrate the Pareto principle (i.e., 80/20 rule) with skewed class distributions, where most vertices belong to a few majority classes and minority classes only contain a handful of instances. When presented with imbalanced class distributions, existing graph embedding learning tends to bias to nodes from majority classes, leaving nodes from minority classes under-trained. In this paper, we propose Dual-Regularized Graph Convolutional Networks (DR-GCN) to handle multi-class imbalanced graphs, where two types of regularization are imposed to tackle class imbalanced representation learning. To ensure that all classes are equally represented, we propose a class-conditioned adversarial training process to facilitate the separation of labeled nodes. Meanwhile, to maintain training equilibrium (i.e., retaining quality of fit across all classes), we force unlabeled nodes to follow a similar latent distribution to the labeled nodes by minimizing their difference in the embedding space. Experiments on real-world imbalanced graphs demonstrate that DR-GCN outperforms the state-of-the-art methods in node classification, graph clustering, and visualization.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Lorenzo Zangari ◽  
Roberto Interdonato ◽  
Antonio Calió ◽  
Andrea Tagarelli

AbstractGraph Neural Networks (GNNs) are powerful tools that are nowadays reaching state of the art performances in a plethora of different tasks such as node classification, link prediction and graph classification. A challenging aspect in this context is to redefine basic deep learning operations, such as convolution, on graph-like structures, where nodes generally have unordered neighborhoods of varying size. State-of-the-art GNN approaches such as Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) work on monoplex networks only, i.e., on networks modeling a single type of relation among an homogeneous set of nodes. The aim of this work is to generalize such approaches by proposing a GNN framework for representation learning and semi-supervised classification in multilayer networks with attributed entities, and arbitrary number of layers and intra-layer and inter-layer connections between nodes. We instantiate our framework with two new formulations of GAT and GCN models, namely and , specifically devised for general, attributed multilayer networks. The proposed approaches are evaluated on an entity classification task on nine widely used real-world network datasets coming from different domains and with different structural characteristics. Results show that both our proposed and methods provide effective and efficient solutions to the problem of entity classification in multilayer attributed networks, being faster to learn and offering better accuracy than the competitors. Furthermore, results show how our methods are able to take advantage of the presence of real attributes for the entities, in addition to arbitrary inter-layer connections between the nodes in the various layers.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 452
Author(s):  
Wenjie Yang ◽  
Jianlin Zhang ◽  
Jingju Cai ◽  
Zhiyong Xu

Graph convolutional networks (GCNs) have brought considerable improvement to the skeleton-based action recognition task. Existing GCN-based methods usually use the fixed spatial graph size among all the layers. It severely affects the model’s abilities to exploit the global and semantic discriminative information due to the limits of receptive fields. Furthermore, the fixed graph size would cause many redundancies in the representation of actions, which is inefficient for the model. The redundancies could also hinder the model from focusing on beneficial features. To address those issues, we proposed a plug-and-play channel adaptive merging module (CAMM) specific for the human skeleton graph, which can merge the vertices from the same part of the skeleton graph adaptively and efficiently. The merge weights are different across the channels, so every channel has its flexibility to integrate the joints. Then, we build a novel shallow graph convolutional network (SGCN) based on the module, which achieves state-of-the-art performance with less computational cost. Experimental results on NTU-RGB+D and Kinetics-Skeleton illustrates the superiority of our methods.


2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Mateo Gende ◽  
Joaquim de Moura ◽  
Jorge Novo ◽  
Pablo Charlón ◽  
Marcos Ortega

The Epiretinal Membrane (ERM) is an ocular disease that appears as a fibro-cellular layer of tissue over the retina, specifically, over the Inner Limiting Membrane (ILM). It causes vision blurring and distortion, and its presence can be indicative of other ocular pathologies, such as diabetic macular edema. The ERM diagnosis is usually performed by visually inspecting Optical Coherence Tomography (OCT) images, a manual process which is tiresome and prone to subjectivity. In this work, we present a methodology for the automatic segmentation and visualisation of the ERM in OCT volumes using deep learning. By employing a Densely Connected Convolutional Network, every pixel in the ILM can be classified into either healthy or pathological. Thus, a segmentation of the region susceptible to ERM appearance can be produced. This methodology also produces an intuitive colour map representation of the ERM presence over a visualisation of the eye fundus created from the OCT volume. In a series of representative experiments conducted to evaluate this methodology, it achieved a Dice score of 0.826±0.112 and a Jaccard index of 0.714±0.155. The results that were obtained demonstrate the competitive performance of the proposed methodology when compared to other works in the state of the art.


2019 ◽  
Author(s):  
Jack Lanchantin ◽  
Yanjun Qi

AbstractPredictive models of DNA epigenetic state such as transcription factor binding are essential for understanding regulatory processes and developing gene therapies. It is known that the 3D genome, or spatial structure of DNA, is highly influential in the epigenetic state. Deep neural networks have achieved state of the art performance on epigenetic state prediction by using short windows of DNA sequences independently. These methods, however, ignore the long-range dependencies when predicting the epigenetic states because modeling the 3D genome is challenging. In this work, we introduce ChromeGCN, a graph convolutional network for epigenetic state prediction by fusing both local sequence and long-range 3D genome information. By incorporating the 3D genome, we relax the i.i.d. assumption of local windows for a better representation of DNA. ChromeGCN explicitly incorporates known long-range interactions into the modeling, allowing us to identify and interpret those important long-range dependencies in influencing epigenetic states. We show experimentally that by fusing sequential and 3D genome data using ChromeGCN, we get a significant improvement over the state-of-the-art deep learning methods as indicated by three metrics. Importantly, we show that ChromeGCN is particularly useful for identifying epigenetic effects in those DNA windows that have a high degree of interactions with other DNA windows.


2020 ◽  
Vol 36 (Supplement_2) ◽  
pp. i659-i667
Author(s):  
Jack Lanchantin ◽  
Yanjun Qi

Abstract Motivation Predictive models of DNA chromatin profile (i.e. epigenetic state), such as transcription factor binding, are essential for understanding regulatory processes and developing gene therapies. It is known that the 3D genome, or spatial structure of DNA, is highly influential in the chromatin profile. Deep neural networks have achieved state of the art performance on chromatin profile prediction by using short windows of DNA sequences independently. These methods, however, ignore the long-range dependencies when predicting the chromatin profiles because modeling the 3D genome is challenging. Results In this work, we introduce ChromeGCN, a graph convolutional network for chromatin profile prediction by fusing both local sequence and long-range 3D genome information. By incorporating the 3D genome, we relax the independent and identically distributed assumption of local windows for a better representation of DNA. ChromeGCN explicitly incorporates known long-range interactions into the modeling, allowing us to identify and interpret those important long-range dependencies in influencing chromatin profiles. We show experimentally that by fusing sequential and 3D genome data using ChromeGCN, we get a significant improvement over the state-of-the-art deep learning methods as indicated by three metrics. Importantly, we show that ChromeGCN is particularly useful for identifying epigenetic effects in those DNA windows that have a high degree of interactions with other DNA windows. Availability and implementation https://github.com/QData/ChromeGCN. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
RAHUL HOODA ◽  
AJAY MITTAL ◽  
SANJEEV SOFAT

Automated segmentation of medical images that aims at extracting anatomical boundaries is a fundamental step in any computer-aided diagnosis (CAD) system. Chest radiographic CAD systems, which are used to detect pulmonary diseases, first segment the lung field to precisely define the region-of-interest from which radiographic patterns are sought. In this paper, a deep learning-based method for segmenting lung fields from chest radiographs has been proposed. Several modifications in the fully convolutional network, which is used for segmenting natural images to date, have been attempted and evaluated to finally evolve a network fine-tuned for segmenting lung fields. The testing accuracy and overlap of the evolved network are 98.75% and 96.10%, respectively, which exceeds the state-of-the-art results.


Sign in / Sign up

Export Citation Format

Share Document