Vulnerability of Hampton Roads, Virginia to Storm-Surge Flooding and Sea-Level Rise

2006 ◽  
Vol 40 (1) ◽  
pp. 43-70 ◽  
Author(s):  
Lisa R. Kleinosky ◽  
Brent Yarnal ◽  
Ann Fisher
2018 ◽  
Vol 52 (2) ◽  
pp. 92-105 ◽  
Author(s):  
Luca Castrucci ◽  
Navid Tahvildari

AbstractHampton Roads is a populated area in the United States Mid-Atlantic region that is highly affected by sea level rise (SLR). The transportation infrastructure in the region is increasingly disrupted by storm surge and even minor flooding events. The purpose of this study is to improve our understanding of SLR impacts on storm surge flooding in the region. We develop a hydrodynamic model to study the vulnerability of several critical flood-prone neighborhoods to storm surge flooding under several SLR projections. The hydrodynamic model is validated for tide prediction, and its performance in storm surge simulation is validated with the water level data from Hurricane Irene (2011). The developed model is then applied to three urban flooding hotspots located in Norfolk, Chesapeake, and the Isle of Wight. The extent, intensity, and duration of storm surge inundation under different SLR scenarios are estimated. Furthermore, the difference between the extent of flooding as predicted by the hydrodynamic model and the “bathtub” approach is highlighted.


2014 ◽  
Vol 129 (1-2) ◽  
pp. 337-349 ◽  
Author(s):  
James E. Neumann ◽  
Kerry Emanuel ◽  
Sai Ravela ◽  
Lindsay Ludwig ◽  
Paul Kirshen ◽  
...  

2012 ◽  
Vol 118 (2) ◽  
pp. 487-500 ◽  
Author(s):  
Keqi Zhang ◽  
Yuepeng Li ◽  
Huiqing Liu ◽  
Hongzhou Xu ◽  
Jian Shen

2021 ◽  
Author(s):  
Natascia Pannozzo ◽  
Nicoletta Leonardi ◽  
Iacopo Carnacina ◽  
Rachel Smedley

<p>Salt marshes are widely recognised as ecosystems with high economic and environmental value. However, it is still unclear how salt marshes will respond to the combined impact of future sea-level rise and possible increases in storm intensity (Schuerch et al. 2013). This study investigates marsh resilience under the combined impact of various storm surge and sea-level scenarios by using a sediment budget approach. The current paradigm is that a positive sediment budget supports the accretion of salt marshes and, therefore, its survival, while a negative sediment budget causes marsh degradation (Ganju et al. 2015). The Ribble Estuary, North-West England, was used as test case, and the hydrodynamic model Delft3D was used to simulate the response of the salt marsh system to the above scenarios. We conclude that the resilience of salt marshes and estuarine systems is enhanced under the effect of storm surges, as they promote flood dominance and trigger a net import of sediment.  Conversely, sea-level rise threatens marsh stability, by promoting ebb dominance and triggering a net export of sediment. Ultimately, when storm surge and sea-level scenarios are combined, results show that storms with the highest intensities have the potential to counteract the negative impact of sea-level rise by masking its effects on the sediment budget.</p><p><strong>Acknowledgements</strong></p><p>We acknowledge the support of the School of Environmental Sciences, University of Liverpool.</p><p><strong>References</strong></p><p>Ganju, N.K., Kirwan, M.L., Dickhudt, P.J., Guntenspergen, G.R., Cahoon, D.R. and Kroeger, K.D. 2015. “Sediment transport-based metrics of wetland stability”. Geophysical Research Letters, 42(19), 7992-8000.</p><p>Schuerch, M., Vafeidis, A., Slawig, T. and Temmerman, S. 2013. “Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise”. Journal of Geophysical Research-Earth Surface, 118(1),<strong> </strong>84-96.</p>


2006 ◽  
Vol 32 (2) ◽  
pp. 194-211 ◽  
Author(s):  
Tim L Webster ◽  
Donald L Forbes ◽  
Edward MacKinnon ◽  
Daniel Roberts

Sign in / Sign up

Export Citation Format

Share Document