Control and synchronization for a class of new chaotic systems via linear feedback

2009 ◽  
Vol 58 (4) ◽  
pp. 675-686 ◽  
Author(s):  
Jianxiong Zhang ◽  
Wansheng Tang
2010 ◽  
Vol 20 (07) ◽  
pp. 2165-2177 ◽  
Author(s):  
XIAOFENG WU ◽  
ZHIFANG GUI ◽  
GUANRONG CHEN

This paper provides a unified approach for achieving and analyzing global synchronization of a class of master-slave coupled multiscroll chaotic systems under linear state-error feedback control. A general mathematical model for such a class of multiscroll chaotic systems is first established. Based on some special properties of such systems, two less-conservative frequency-domain criteria for the desirable global synchronization are rigorously proven by means of the absolute stability theory. The analysis is then applied to two master-slave coupled modified Chua's circuits, obtaining the corresponding simple and precise algebraic criteria for global synchronization, which are finally verified by numerical simulations.


1999 ◽  
Vol 48 (9) ◽  
pp. 1618
Author(s):  
GAO JIN-FENG ◽  
LUO XIAN-JUE ◽  
MA XI-KUI ◽  
PAN XIU-QIN ◽  
WANG JUN-KUN

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Runzi Luo ◽  
Haipeng Su

This paper investigates the stabilization and synchronization of a class of fractional-order chaotic systems which are affected by external disturbances. The chaotic systems are assumed that only a single output can be used to design the controller. In order to design the proper controller, some observer systems are proposed. By using the observer systems some sufficient conditions for achieving chaos control and synchronization of fractional-order chaotic systems are derived. Numerical examples are presented by taking the fractional-order generalized Lorenz chaotic system as an example to show the feasibility and validity of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yeong-Jeu Sun

The concept of practical synchronization is introduced and the chaos synchronization of master-slave chaotic systems with uncertain input nonlinearities is investigated. Based on the differential and integral inequalities (DII) approach, a simple linear control is proposed to realize practical synchronization for master-slave chaotic systems with uncertain input nonlinearities. Besides, the guaranteed exponential convergence rate can be prespecified. Applications of proposed master-slave chaotic synchronization technique to secure communication as well as several numerical simulations are given to demonstrate the feasibility and effectiveness of the obtained result.


2012 ◽  
Vol 36 (3) ◽  
pp. 863-877 ◽  
Author(s):  
Mohammad A. Rahimi ◽  
Hassan Salarieh ◽  
Aria Alasty

2006 ◽  
Vol 16 (04) ◽  
pp. 1041-1047 ◽  
Author(s):  
CHUANDONG LI ◽  
XIAOFENG LIAO

As a special case of generalized synchronization, chaos anti-synchronization can be characterized by the vanishing of the sum of relevant variables. In this paper, based on Lyapunov stability theorem for ordinary differential equations, several sufficient conditions for guaranteeing the existence of anti-synchronization in a class of coupled identical chaotic systems via linear feedback or adaptive linear feedback methods are derived. Chua's circuit is presented as an example to demonstrate the effectiveness of the proposed approach by computer simulations.


Sign in / Sign up

Export Citation Format

Share Document