Bäcklund transformation, infinite conservation laws and periodic wave solutions of a generalized (3+1)-dimensional nonlinear wave in liquid with gas bubbles

2015 ◽  
Vol 83 (3) ◽  
pp. 1199-1215 ◽  
Author(s):  
Jian-Min Tu ◽  
Shou-Fu Tian ◽  
Mei-Juan Xu ◽  
Xiao-Qiu Song ◽  
Tian-Tian Zhang
2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Wenjuan Rui ◽  
Yufeng Zhang

Binary Bell polynomials are applied to construct bilinear formalism, bilinear Bäcklund transformation, Lax pair, and infinite conservation laws of the generalized variable-coefficient fifth-order Korteweg-de Vries equation. In the meantime, quasi-periodic wave solutions for the equation are obtained by using the Riemann theta function. The asymptotic properties of one-periodic wave solution and two-periodic wave solutions are also established, respectively.


2021 ◽  
Author(s):  
Lingchao He ◽  
Jianwen Zhang ◽  
Zhonglong Zhao

Abstract In this paper, we consider a generalized (2+1)-dimensional nonlinear wave equation. Based on the bilinear, the N-soliton solutions are obtained. The resonance Y-type soliton and the interaction solutions between M-resonance Y-type solitons and P-resonance Y-type solitons are constructed by adding some new constraints to the parameters of the N-soliton solutions. The new type of two-opening resonance Y-type soliton solutions are presented by choosing some appropriate parameters in 3-soliton solutions. The hybrid solutions consisting of resonance Y-type solitons, breathers and lumps are investigated. The trajectories of the lump waves before and after the collision with the Y-type solitons are analyzed from the perspective of mathematical mechanism. Furthermore, the multi-dimensional Riemann-theta function is employed to investigate the quasi-periodic wave solutions. The one-periodic and two-periodic wave solutions are obtained. The asymptotic properties are systematically analyzed, which establish the relations between the quasi-periodic wave solutions and the soliton solutions. The results may be helpful to provide some effective information to analyze the dynamical behaviors of solitons, fluid mechanics, shallow water waves and optical solitons.


2004 ◽  
Vol 59 (7-8) ◽  
pp. 389-396 ◽  
Author(s):  
A. H. Khater ◽  
M. M. Hassan

We present the mixed dn-sn method for finding periodic wave solutions of some nonlinear wave equations. Introducing an appropriate transformation, we extend this method to a special type of nonlinear equations and construct their solutions, which are not expressible as polynomials in the Jacobi elliptic functions. The obtained solutions include the well known kink-type and bell-type solutions as a limiting cases. Also, some new travelling wave solutions are found. - PACS: 02.30.Jr; 03.40.Kf


Sign in / Sign up

Export Citation Format

Share Document