Quasiperiodic waves, solitary waves and asymptotic properties for a generalized (3 + 1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation

2017 ◽  
Vol 88 (3) ◽  
pp. 2265-2279 ◽  
Author(s):  
Xiu-Bin Wang ◽  
Shou-Fu Tian ◽  
Lian-Li Feng ◽  
Hui Yan ◽  
Tian-Tian Zhang
2017 ◽  
Vol 31 (36) ◽  
pp. 1750350 ◽  
Author(s):  
Xue-Wei Yan ◽  
Shou-Fu Tian ◽  
Min-Jie Dong ◽  
Li Zou

In this paper, the generalized variable-coefficient forced Kadomtsev–Petviashvili (gvcfKP) equation is investigated, which can be used to characterize the water waves of long wavelength relating to nonlinear restoring forces. Using a dependent variable transformation and combining the Bell’s polynomials, we accurately derive the bilinear expression for the gvcfKP equation. By virtue of bilinear expression, its solitary waves are computed in a very direct method. By using the Riemann theta function, we derive the quasiperiodic solutions for the equation under some limitation factors. Besides, an effective way can be used to calculate its homoclinic breather waves and rogue waves, respectively, by using an extended homoclinic test function. We hope that our results can help enrich the dynamical behavior of the nonlinear wave equations with variable-coefficient.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Yanni Zhang ◽  
Jing Pang

Based on the Hirota bilinear form of the generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation, the lump and lump-type solutions are generated through symbolic computation, whose analyticity can be easily achieved by taking special choices of the involved parameters. The property of solutions is investigated and exhibited vividly by three-dimensional plots and contour plots.


2018 ◽  
Vol 32 (02) ◽  
pp. 1750170 ◽  
Author(s):  
Zi-Jian Xiao ◽  
Bo Tian ◽  
Yan Sun

In this paper, we investigate a (2[Formula: see text]+[Formula: see text]1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili (mKP) equation in fluid dynamics. With the binary Bell-polynomial and an auxiliary function, bilinear forms for the equation are constructed. Based on the bilinear forms, multi-soliton solutions and Bell-polynomial-type Bäcklund transformation for such an equation are obtained through the symbolic computation. Soliton interactions are presented. Based on the graphic analysis, Parametric conditions for the existence of the shock waves, elevation solitons and depression solitons are given, and it is shown that under the condition of keeping the wave vectors invariable, the change of [Formula: see text] and [Formula: see text] can lead to the change of the solitonic velocities, but the shape of each soliton remains unchanged, where [Formula: see text] and [Formula: see text] are the variable coefficients in the equation. Oblique elastic interactions can exist between the (i) two shock waves, (ii) two elevation solitons, and (iii) elevation and depression solitons. However, oblique interactions between (i) shock waves and elevation solitons, (ii) shock waves and depression solitons are inelastic.


2018 ◽  
Vol 48 (2) ◽  
pp. 283-300 ◽  
Author(s):  
Chunxin Yuan ◽  
Roger Grimshaw ◽  
Edward Johnson ◽  
Xueen Chen

AbstractThis paper presents a horizontally two-dimensional theory based on a variable-coefficient Kadomtsev–Petviashvili equation, which is developed to investigate oceanic internal solitary waves propagating over variable bathymetry, for general background density stratification and current shear. To illustrate the theory, a typical monthly averaged density stratification is used for the propagation of an internal solitary wave over either a submarine canyon or a submarine plateau. The evolution is essentially determined by two components, nonlinear effects in the main propagation direction and the diffraction modulation effects in the transverse direction. When the initial solitary wave is located in a narrow area, the consequent spreading effects are dominant, resulting in a wave field largely manifested by a significant diminution of the leading waves, together with some trailing shelves of the opposite polarity. On the other hand, if the initial solitary wave is uniform in the transverse direction, then the evolution is more complicated, though it can be explained by an asymptotic theory for a slowly varying solitary wave combined with the generation of trailing shelves needed to satisfy conservation of mass. This theory is used to demonstrate that it is the transverse dependence of the nonlinear coefficient in the Kadomtsev–Petviashvili equation rather than the coefficient of the linear transverse diffraction term that determines how the wave field evolves. The Massachusetts Institute of Technology (MIT) general circulation model is used to provide a comparison with the variable-coefficient Kadomtsev–Petviashvili model, and good qualitative and quantitative agreements are found.


Sign in / Sign up

Export Citation Format

Share Document