On the integrability of 2D Hamiltonian systems with variable Gaussian curvature

2018 ◽  
Vol 93 (2) ◽  
pp. 933-943 ◽  
Author(s):  
A. A. Elmandouh
Author(s):  
Wojciech Szumiński ◽  
Andrzej J. Maciejewski

AbstractIn the paper [1], the author formulates in Theorem 2 necessary conditions for integrability of a certain class of Hamiltonian systems with non-constant Gaussian curvature, which depends on local coordinates. We give a counterexample to show that this theorem is not correct in general. This contradiction is explained in some extent. However, the main result of this note is our theorem that gives new simple and easy to check necessary conditions to integrability of the system considered in [1]. We present several examples, which show that the obtained conditions are effective. Moreover, we justify that our criterion can be extended to wider class of systems, which are given by non-meromorphic Hamiltonian functions.


Author(s):  
Ирина Николаевна Беляева ◽  
Игорь Константинович Кириченко ◽  
Олег Дмитриевич Пташный ◽  
Наталья Николаевна Чеканова ◽  
Татьяна Александровна Ярхо

В работе исследовано семейство гамильтоновых систем с двумя степенями свободы. Расчетами сечений Пуанкаре показано, что при произвольных значениях параметров функции Гамильтона система является неинтегрируемой и в ней реализуется динамический хаос. Найдено, что для трех наборов параметров рассматриваемая система является интегрируемой, однако в одном интегрируемом случае при этих же значениях параметров на поверхности потенциальной энергии имеется область с отрицательной гауссовой кривизной, в то же время в двух других случаях интегрируемости при соответствующих значениях параметров областей с отрицательной гауссовой кривизной не имеется. Таким образом, наличие областей с отрицательной гауссовой кривизной на поверхности потенциальной энергии не достаточно для развития в системе глобального хаоса. Получена классическая нормальная форма для произвольных значений параметров. The family of the Hamiltonian systems with two degrees of freedom was investigated. The calculations of the Poincaré sections show that with arbitrary values of the parameters of the Hamilton function, the system is non-integrable and dynamic chaos is realized in it. For the three parameter sets, the system in question was found to be integrable, but shows that in one integrable case on the potential energy surface (PES) there are regions with the negative Gaussian curvature. It was found that in one integrable case for the same values of the parameters, the potential energy surface has a region with the negative Gaussian curvature. At the same time, in the other two cases, the domains with negative Gaussian curvature are not integrable for the corresponding values of the parameters. Thus, the presence of regions with negative Gaussian curvature on the potential energy surface is not enough for the development of the global chaos in the system. The classical normal form for arbitrary parameter values is obtained.


2018 ◽  
Vol 14 (3) ◽  
pp. 5708-5733 ◽  
Author(s):  
Vyacheslav Michailovich Somsikov

The analytical review of the papers devoted to the deterministic mechanism of irreversibility (DMI) is presented. The history of solving of the irreversibility problem is briefly described. It is shown, how the DMI was found basing on the motion equation for a structured body. The structured body was given by a set of potentially interacting material points. The taking into account of the body’s structure led to the possibility of describing dissipative processes. This possibility caused by the transformation of the body’s motion energy into internal energy. It is shown, that the condition of holonomic constraints, which used for obtaining of the canonical formalisms of classical mechanics, is excluding the DMI in Hamiltonian systems. The concepts of D-entropy and evolutionary non-linearity are discussed. The connection between thermodynamics and the laws of classical mechanics is shown. Extended forms of the Lagrange, Hamilton, Liouville, and Schrödinger equations, which describe dissipative processes, are presented.


1986 ◽  
Author(s):  
Konstantin Mischaikow
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nikolaos Vasios ◽  
Bolei Deng ◽  
Benjamin Gorissen ◽  
Katia Bertoldi

AbstractMulti-welled energy landscapes arising in shells with nonzero Gaussian curvature typically fade away as their thickness becomes larger because of the increased bending energy required for inversion. Motivated by this limitation, we propose a strategy to realize doubly curved shells that are bistable for any thickness. We then study the nonlinear dynamic response of one-dimensional (1D) arrays of our universally bistable shells when coupled by compressible fluid cavities. We find that the system supports the propagation of bidirectional transition waves whose characteristics can be tuned by varying both geometric parameters as well as the amount of energy supplied to initiate the waves. However, since our bistable shells have equal energy minima, the distance traveled by such waves is limited by dissipation. To overcome this limitation, we identify a strategy to realize thick bistable shells with tunable energy landscape and show that their strategic placement within the 1D array can extend the propagation distance of the supported bidirectional transition waves.


Sign in / Sign up

Export Citation Format

Share Document