bending energy
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 41)

H-INDEX

27
(FIVE YEARS 3)

Author(s):  
Xiaoyan Liu ◽  
Joakim Stenhammar ◽  
Håkan Wennerström ◽  
Emma Sparr

2022 ◽  
Author(s):  
Raj Kumar Sadhu ◽  
Sarah R. Barger ◽  
Samo Penic ◽  
Ales Iglic ◽  
Mira Krendel ◽  
...  

Phagocytosis is the process of engulfment and internalization of comparatively large particles by the cell, that plays a central role in the functioning of our immune system. We study the process of phagocytosis by considering a simplified coarse grained model of a three-dimensional vesicle, having uniform adhesion interaction with a rigid particle, in the presence of curved membrane proteins and active cytoskeletal forces. Complete engulfment is achieved when the bending energy cost of the vesicle is balanced by the gain in the adhesion energy. The presence of curved (convex) proteins reduces the bending energy cost by self-organizing with higher density at the highly curved leading edge of the engulfing membrane, which forms the circular rim of the phagocytic cup that wraps around the particle. This allows the engulfment to occur at much smaller adhesion strength. When the curved proteins exert outwards protrusive forces, representing actin polymerization, at the leading edge, we find that engulfment is achieved more quickly and at lower protein density. We consider spherical as well as non-spherical particles, and find that non-spherical particles are more difficult to engulf in comparison to the spherical particles of the same surface area. For non-spherical particles, the engulfment time crucially depends upon the initial orientation of the particles with respect to the vesicle. Our model offers a mechanism for the spontaneous self-organization of the actin cytoskeleton at the phagocytic cup, in good agreement with recent high-resolution experimental observations.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 79
Author(s):  
Jiaxin Wu ◽  
Fuchen Guo ◽  
Ke Li ◽  
Linxi Zhang

The sliding dynamics along two asymmetric/symmetric axial chains of ring chains linked by a linear chainis investigated using molecular dynamics (MD) simulations. A novel sub-diffusion behavior is observed for ring chains sliding along eithera fixed rod-like chain or fluctuating axial chain on asymmetric/symmetric axial chainsat the intermediate time range due to their strongly interplay between two ring chains. However, two ring chains slide in the normal diffusion at along time range because their sliding dynamics can be regarded as an overall motion of two ring chains. For ring chains sliding on two symmetric/asymmetricaxial chains, the diffusion coefficient D of ring chains relies on the bending energy of axial chains (Kb) as well as the distance of two axial chains (d). There exists a maximum diffusion coefficient Dmax at d = d* in which ring chains slide at the fastest velocity due to the maximum conformational entropy for the linking chain between two ring chainsat d = d*. Ring chain slide on fixed rod-like axial chainsfaster in the symmetric axial chain case than that in the asymmetric axial chain case. However, ring chains slide on fluctuatingaxial chainsslower in the symmetric axial chain case than that in the asymmetric axial chain case. This investigation can provide insights into the effects of the linked chain conformation on the sliding dynamics of ring chains in a slide-ring gel.


2021 ◽  
pp. 1-18
Author(s):  
Zhongyuan Wo ◽  
Evgueni Filipov

Abstract Thin-walled corrugated tubes that have a bending multi-stability, such as the bendy straw, allow for variable orientations over the tube length. Compared to the long history of corrugated tubes in practical applications, the mechanics of the bending stability and how it is affected by the cross-sections and other geometric parameters remain unknown. To explore the geometry-driven bending stabilities, we used several tools, including a reduced-order simulation package, a simplified linkage model, and physical prototypes. We found the bending stability of a circular two-unit corrugated tube is dependent on the longitudinal geometry and the stiffness of the crease lines that connect separate frusta. Thinner shells, steeper cones, and weaker creases are required to achieve bending bi-stability. We then explored how the bending stability changes as the cross-section becomes elongated or distorted with concavity. We found the bending bi-stability is favored by deep and convex cross-sections, while wider cross-sections with a large concavity remain mono-stable. The different geometries influence the amounts of stretching and bending energy associated with bending the tube. The stretching energy has a bi-stable profile and can allow for a stable bent configuration, but it is counteracted by the bending energy which increases monotonically. The findings from this work can enable informed design of corrugated tube systems with desired bending stability behavior.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7616
Author(s):  
Georg Baumann ◽  
Reinhard Brandner ◽  
Ulrich Müller ◽  
Alexander Stadlmann ◽  
Florian Feist

In order to use wood for structural and load-bearing purposes in mechanical engineering, basic information on the impact behaviour of the material over a wide temperature range is needed. Diffuse porous hardwoods such as solid birch wood (Betula pendula) and solid beech wood (Fagus sylvatica) are particularly suited for the production of engineered wood products (EWPs) such as laminated veneer lumber (LVL) or plywood due to their processability in a veneer peeling process. In the frame of this study, solid birch wood and solid beech wood samples (300 × 20 × 20 mm3) were characterised by means of an impact pendulum test setup (working capacity of 150 J) at five temperature levels, ranging from −30 °C to +90 °C. The pendulum hammer (mass = 15 kg) was equipped with an acceleration sensor in order to obtain the acceleration pulse and deceleration force besides the impact bending energy. In both solid birch wood and solid beech wood, the deceleration forces were highest at temperatures at and below zero. While the average impact bending energy for solid birch wood remained almost constant over the whole considered temperature range, it was far less stable and prone to higher scattering for solid beech wood.


2021 ◽  
Vol 18 (181) ◽  
pp. 20210229
Author(s):  
G. Forte ◽  
D. Michieletto ◽  
D. Marenduzzo ◽  
E. Orlandini

We theoretically study the integration of short viral DNA in a DNA braid made up by two entwined double-stranded DNA molecules. We show that the statistics of single integration events substantially differ in the straight and buckled, or plectonemic, phase of the braid and are more likely in the latter. We further discover that integration is most likely close to plectoneme tips, where the larger bending energy helps overcome the associated energy barrier and that successive integration events are spatio-temporally correlated, suggesting a potential mechanistic explanation of clustered integration sites in host genomes. The braid geometry we consider provides a novel experimental set-up to quantify integration in a supercoiled substrate in vitro , and to better understand the role of double-stranded DNA topology during this process.


Author(s):  
H. Singh ◽  
J. A. Hanna

AbstractThe balance of pseudomomentum is discussed and applied to simple elasticity, ideal fluids, and the mechanics of inextensible rods and sheets. A general framework is presented in which the simultaneous variation of an action with respect to position, time, and material labels yields bulk balance laws and jump conditions for momentum, energy, and pseudomomentum. The example of simple elasticity of space-filling solids is treated at length. The pseudomomentum balance in ideal fluids is shown to imply conservation of vorticity, circulation, and helicity, and a mathematical similarity is noted between the evaluation of circulation along a material loop and the J-integral of fracture mechanics. Integration of the pseudomomentum balance, making use of a prescription for singular sources derived by analogy with the continuous form of the balance, directly provides the propulsive force driving passive reconfiguration or locomotion of confined, inhomogeneous elastic rods. The conserved angular momentum and pseudomomentum are identified in the classification of conical sheets with rotational inertia or bending energy.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 431
Author(s):  
Johannes Schönke ◽  
Michael Grunwald ◽  
Eliot Fried

We describe a method for constructing developable bands with N ≥ 3 half twists. Each band is formed by threading a flat rectangular strip through a scaffold made from identical circular cylinders and smoothly connecting its short ends. The N cylinders in a scaffold are arranged with N-fold rotational symmetry. The number of half twists in a band is equal to the number N of cylinders in its scaffold and each band inherits the symmetry of its scaffold. Each scaffold admits a family of bands of the same length but variable width up to a maximum value determined by the features of the scaffold. Apart from orientable and nonorientable unknots, our method allows for the construction of bands with the topology of torus knots. We detail the geometric properties of the construction, discuss certain fundamental restrictions that must be met to ensure constructability, and calculate the elastic bending energy of each band. The rotational symmetry underlying the construction is essential for obtaining the presented bands, as the general non-symmetric problem is even more complex and has not yet been investigated. The bands and their corresponding scaffolds can be used as structural elements in practical applications, one of which we describe and analyze. The construction serves as a basis for a general framework for building a large variety of scaffolds and the corresponding unstretchable bands. Together, these assemblies can be used in architectural, interior, and machine design. They also open new avenues for the layout of conveyor belts in factories, airports, and other settings.


Sign in / Sign up

Export Citation Format

Share Document