Asynchronous observer-based finite-time control for nonlinear Markovian jump systems with time-varying delays

2021 ◽  
Vol 104 (1) ◽  
pp. 509-521
Author(s):  
Yao Wang ◽  
Shengyuan Xu ◽  
Junwei Lu ◽  
Zhengqiang Zhang
Author(s):  
Yao Wang ◽  
Jun Guo ◽  
Guobao Liu ◽  
Junwei Lu ◽  
Fangyuan Li

The problem of finite-time filtering for nonlinear Markovian jump systems subject to extended dissipativity with unknown transition rates and time-varying delays is investigated in this paper. Firstly, by constructing novel Lyapunov-Krasovskii functionals and utilizing delay partitioning method, the error system is proved to be stochastically finite-time bounded and extended dissipative. Secondly, in virtue of linear matrix inequalities approach, the desired mode-dependent filter is obtained. Finally, two simulations are illustrated for the purpose of demonstrating the less conservativeness and effectiveness of the proposed method.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Guoliang Wang ◽  
Bo Feng

The finite-time control problem of discrete-time delayed Markovian jump systems with partially delayed actuator saturation is considered by a mode-dependent parameter approach. Different from the traditionally saturated actuators, a kind of saturated actuator being partially delay-dependent is firstly proposed, where both nondelay and delay states are included and occur asynchronously. Moreover, the probability distributions of such two terms are described by the Bernoulli variable and are taken into account in the controller design. Sufficient conditions for the existence of the desired controller are presented with LMIs. Finally, a numerical example is provided to show the effectiveness and superiority of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document