error system
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 70)

H-INDEX

14
(FIVE YEARS 4)

Author(s):  
Juan Zhou ◽  
HuiLing Lai ◽  
Bo Men

This paper considers the [Formula: see text] dissipative filtering problem for a class of Singular Markov jump systems (SMJSs) with distributed time delays and discrete time delays. First, using Lyapunov’s stability theory and combining delay partitioning technique, integral partitioning technique, and free weight matrix method, the sufficient conditions for stochastic admissibility and [Formula: see text] dissipation of system are studied. Then, a filtering design method based on linear matrix inequalities (LMIs) is given to make the filtering error system stochastically admissible and [Formula: see text] dissipative. Finally, numerical simulations verify the effectiveness of the resulting method.


2022 ◽  
Vol 355 ◽  
pp. 03029
Author(s):  
Hongyang Li ◽  
Hailiang Li ◽  
Ziyi Li

Aiming at the problem of following control of autonomous vehicle, the following controller is designed based on Leader-follower strategies. First, the kinematic modeling is done. Next, Leader-follower model is used to describe the following structure and L − ϕ method is used to build error system. Then, The speed controller for the follower is designed to achieve the objectives. Finally, the simulation is done by Matlab, the results show that the controller is effective.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3231
Author(s):  
Mahmoud Elsisi ◽  
Hatim G. Zaini ◽  
Karar Mahmoud ◽  
Shimaa Bergies ◽  
Sherif S. M. Ghoneim

The tracking of a predefined trajectory with less error, system-settling time, system, and overshoot is the main challenge with the robot-manipulator controller. In this regard, this paper introduces a new design for the robot-manipulator controller based on a recently developed algorithm named the butterfly optimization algorithm (BOA). The proposed BOA utilizes the neighboring butterflies’ co-operation by sharing their knowledge in order to tackle the issue of trapping at the local optima and enhance the global search. Furthermore, the BOA requires few adjustable parameters via other optimization algorithms for the optimal design of the robot-manipulator controller. The BOA is combined with a developed figure of demerit fitness function in order to improve the trajectory tracking, which is specified by the simultaneous minimization of the response steady-state error, settling time, and overshoot by the robot manipulator. Various test scenarios are created to confirm the performance of the BOA-based robot manipulator to track different trajectories, including linear and nonlinear manners. Besides, the proposed algorithm can provide a maximum overshoot and settling time of less than 1.8101% and 0.1138 s, respectively, for the robot’s response compared to other optimization algorithms in the literature. The results emphasize the capability of the BOA-based robot manipulator to provide the best performance compared to the other techniques.


Author(s):  
Rim Mrani Alaoui ◽  
Abderrahim El-Amrani

The work treats the filter H∞ finite frequency (FF) in Takagi-Sugeno (T-S) two dimensional (2-D) systems described by Fornasini-Marchesini local state-space (FM LSS)models. The goal of this work is to find an FF H∞ T-S fuzzy filter model design in such a way that the error system is stable and has a reduced FF H∞ performance over FF area swith noise is established as aprerequisite. Via the use of the generalized Kalman Yakubovich Popov (gKYP) lemma, Lyapunov functions approach, Finsler’s lemma, and parameterize slack matrices, new design conditions guaranteeing the FF H∞ T-S fuzzy filter method of FM LSS models are developed by solving linear matrix inequalities (LMIs). At last, the simulation results are provided to show the effectiveness and the validity of the proposed FF T-S fuzzy of FM LSS models strategy by a practical application has been made.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1516
Author(s):  
Adel Ouannas ◽  
Iqbal M. Batiha ◽  
Stelios Bekiros ◽  
Jinping Liu ◽  
Hadi Jahanshahi ◽  
...  

The Selkov system, which is typically employed to model glycolysis phenomena, unveils some rich dynamics and some other complex formations in biochemical reactions. In the present work, the synchronization problem of the glycolysis reaction-diffusion model is handled and examined. In addition, a novel convenient control law is designed in a linear form and, on the other hand, the stability of the associated error system is demonstrated through utilizing a suitable Lyapunov function. To illustrate the applicability of the proposed schemes, several numerical simulations are performed in one- and two-spatial dimensions.


Author(s):  
Miloud Koumir ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

<p>This paper is concerned with the problem of model reduction design for continuous systems in Takagi-Sugeno fuzzy model. Through the defined FF H∞ gain performance, sufficient conditions are derived to design model reduction and to assure the fuzzy error system to be asymptotically stable with a FF H∞ gain performance index. The explicit conditions of fuzzy model reduction are developed by solving linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.</p>


Author(s):  
Yao Wang ◽  
Jun Guo ◽  
Guobao Liu ◽  
Junwei Lu ◽  
Fangyuan Li

The problem of finite-time filtering for nonlinear Markovian jump systems subject to extended dissipativity with unknown transition rates and time-varying delays is investigated in this paper. Firstly, by constructing novel Lyapunov-Krasovskii functionals and utilizing delay partitioning method, the error system is proved to be stochastically finite-time bounded and extended dissipative. Secondly, in virtue of linear matrix inequalities approach, the desired mode-dependent filter is obtained. Finally, two simulations are illustrated for the purpose of demonstrating the less conservativeness and effectiveness of the proposed method.


2021 ◽  
Vol 20 ◽  
pp. 281-288
Author(s):  
Mengying Ding ◽  
Yali Dong

In this paper, we investigate the problem of robust H∞ filter design for a class of discrete-time nonlinear systems. The systems under consider involves time-varying delays and parameters uncertainties. The main objective is to design a linear full-order filter to ensure that the resulting filtering error system is asymptotically stable with a prescribed H∞ performance level. By constructing an appropriate Lyapunov-Krasovskii functional, some novel sufficient conditions are established to guarantee the filter error dynamics system is robust asymptotically stable with H∞ performance γ , and the H∞ filter is designed in term of linear matrix inequalities. Finally, a numerical example is provided to illustrate the efficiency of proposed method.


2021 ◽  
Vol 69 (9) ◽  
pp. 806-816
Author(s):  
Lukas Ecker ◽  
Tobias Malzer ◽  
Arne Wahrburg ◽  
Markus Schöberl

Abstract This contribution is concerned with the design of observers for a single mast stacker crane, which is used, e. g., for storage and removal of loads in automated warehouses. As the mast of such stacker cranes is typically a lightweight construction, the system under consideration is described by ordinary as well as partial differential equations, i. e., the system exhibits a mixed finite-/infinite-dimensional character. We will present two different observer designs, an Extended Kalman Filter based on a finite-dimensional system approximation, using the Rayleigh-Ritz method and an approach exploiting the port-Hamiltonian system representation for the mixed finite-/infinite-dimensional scenario where in particular the observer-error system should be formulated in the port-Hamiltonian framework. The mixed-dimensional observer and the Kalman Filter are employed to estimate the deflection of the beam based on signals acquired by an inertial measurement unit at the beam tip. Such an approach considerably simplifies mechatronic integration as it renders strain-gauges at the base of the mast obsolete. Finally, measurement results demonstrate the capability of these approaches for monitoring and vibration-rejection purposes.


Sign in / Sign up

Export Citation Format

Share Document